論文の概要: On Explaining Knowledge Distillation: Measuring and Visualising the Knowledge Transfer Process
- arxiv url: http://arxiv.org/abs/2412.13943v1
- Date: Wed, 18 Dec 2024 15:25:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:49:46.990847
- Title: On Explaining Knowledge Distillation: Measuring and Visualising the Knowledge Transfer Process
- Title(参考訳): 知識蒸留の解説-知識伝達過程の測定と可視化-
- Authors: Gereziher Adhane, Mohammad Mahdi Dehshibi, Dennis Vetter, David Masip, Gemma Roig,
- Abstract要約: 知識蒸留のための勾配に基づく視覚的説明法UniCAMを提案する。
教師の知識の指導により、学生モデルはより効率的になり、関係のないものを捨てながら、より関連性の高い特徴を学習する。
CIFAR10、ASIRRA、植物病のデータセットの実験は、UniCAMと2つの指標がKDプロセスを説明する貴重な洞察を提供することを示した。
- 参考スコア(独自算出の注目度): 4.6545033423204965
- License:
- Abstract: Knowledge distillation (KD) remains challenging due to the opaque nature of the knowledge transfer process from a Teacher to a Student, making it difficult to address certain issues related to KD. To address this, we proposed UniCAM, a novel gradient-based visual explanation method, which effectively interprets the knowledge learned during KD. Our experimental results demonstrate that with the guidance of the Teacher's knowledge, the Student model becomes more efficient, learning more relevant features while discarding those that are not relevant. We refer to the features learned with the Teacher's guidance as distilled features and the features irrelevant to the task and ignored by the Student as residual features. Distilled features focus on key aspects of the input, such as textures and parts of objects. In contrast, residual features demonstrate more diffused attention, often targeting irrelevant areas, including the backgrounds of the target objects. In addition, we proposed two novel metrics: the feature similarity score (FSS) and the relevance score (RS), which quantify the relevance of the distilled knowledge. Experiments on the CIFAR10, ASIRRA, and Plant Disease datasets demonstrate that UniCAM and the two metrics offer valuable insights to explain the KD process.
- Abstract(参考訳): 知識蒸留(KD)は教師から学生への知識伝達過程が不透明であるため,KDに関連する問題に対処することが困難である。
そこで我々は,KDで学んだ知識を効果的に解釈する,新しい勾配に基づく視覚的説明法UniCAMを提案する。
実験の結果、教師の知識の指導により、学生モデルはより効率的になり、関係のないものを捨てながら、より関連性の高い特徴を学習することがわかった。
本稿では,教師の指導で学んだ特徴を蒸留した特徴として,その課題とは無関係な特徴を留学生が残した特徴として言及する。
蒸留された機能は、テクスチャやオブジェクトの一部といった入力の重要な側面に焦点を当てている。
対照的に、残像はより拡散した注意を示し、しばしば対象対象物の背景を含む無関係な領域をターゲットにしている。
さらに, 蒸留知識の関連性を定量化する特徴類似度スコア (FSS) と関連度スコア (RS) の2つの新しい指標を提案した。
CIFAR10、ASIRRA、植物病のデータセットの実験は、UniCAMと2つの指標がKDプロセスを説明する貴重な洞察を提供することを示した。
関連論文リスト
- Student-Oriented Teacher Knowledge Refinement for Knowledge Distillation [11.754014876977422]
本報告では,学生のニーズに合うように教師の知識を改良し,学生を意識した視点を新たに導入する。
本稿では,訓練中に学習可能な機能拡張戦略を取り入れた学生指向知識蒸留(SoKD)について紹介する。
また,教師と学生の相互関心領域を特定するために,DAM(Distinctive Area Detection Module)をデプロイした。
論文 参考訳(メタデータ) (2024-09-27T14:34:08Z) - Knowledge Distillation via Token-level Relationship Graph [12.356770685214498]
token-level Relation Graph (TRG) を用いた知識蒸留法を提案する。
TRGを利用することで、教師モデルから高レベルの意味情報を効果的にエミュレートすることができる。
我々は,提案手法の有効性を,いくつかの最先端手法に対して評価する実験を行った。
論文 参考訳(メタデータ) (2023-06-20T08:16:37Z) - Knowledge Diffusion for Distillation [53.908314960324915]
知識蒸留(KD)における教師と学生の表現ギャップ
これらの手法の本質は、ノイズ情報を捨て、その特徴の貴重な情報を蒸留することである。
DiffKDと呼ばれる新しいKD手法を提案し、拡散モデルを用いて特徴を明示的に識別し一致させる。
論文 参考訳(メタデータ) (2023-05-25T04:49:34Z) - Gradient-Guided Knowledge Distillation for Object Detectors [3.236217153362305]
グラディエント誘導型知識蒸留(GKD)という,物体検出における知識蒸留の新しい手法を提案する。
我々のGKDは勾配情報を用いて、検出損失に大きな影響を及ぼす特徴を識別し、割り当て、生徒が教師から最も関連性の高い特徴を学習できるようにする。
KITTIとCOCO-Trafficデータセットの実験は、対象検出のための知識蒸留における本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-03-07T21:09:09Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
物体検出のための知識蒸留(KD)は、教師モデルから知識を伝達することで、コンパクトな検出器を訓練することを目的としている。
教師モデルの反直感的知覚に固有の知識を蒸留することを目的とした,一貫性のない知識蒸留(IKD)を提案する。
本手法は, 1段, 2段, アンカーフリーの物体検出器において, 最先端のKDベースラインより優れる。
論文 参考訳(メタデータ) (2022-09-20T16:36:28Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
単一画像超解像課題に対する教師/学生アーキテクチャに基づくモデルに依存しないメタ知識蒸留法を提案する。
種々の単一画像超解像データセットを用いた実験により,提案手法は既存の知識表現関連蒸留法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-18T02:41:04Z) - Knowledge Condensation Distillation [38.446333274732126]
既存の方法は、知識のヒントを発掘し、すべての知識を学生に伝達することに焦点を当てている。
本稿では,知識凝縮蒸留(KCD)を提案する。
我々のアプローチは、既製のKDメソッドの上に構築しやすく、追加のトレーニングパラメータや無視可能なオーバーヘッドがない。
論文 参考訳(メタデータ) (2022-07-12T09:17:34Z) - Collaborative Teacher-Student Learning via Multiple Knowledge Transfer [79.45526596053728]
複数知識伝達(CTSL-MKT)による協調学習を提案する。
複数の学生が協調的な方法で個々のインスタンスとインスタンスの関係の両方から知識を学ぶことができます。
4つの画像データセットの実験とアブレーション研究は、提案したCTSL-MKTが最先端のKD法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-01-21T07:17:04Z) - Wasserstein Contrastive Representation Distillation [114.24609306495456]
We propose Wasserstein Contrastive Representation Distillation (WCoRD) which leverages both primal and dual form of Wasserstein distance for knowledge distillation。
二重形式はグローバルな知識伝達に使用され、教師と学生のネットワーク間の相互情報の低い境界を最大化する対照的な学習目標をもたらします。
実験では、提案されたWCoRD法が特権情報蒸留、モデル圧縮およびクロスモーダル転送における最先端のアプローチを上回ることを実証した。
論文 参考訳(メタデータ) (2020-12-15T23:43:28Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
知識蒸留では、教師ネットワークから「暗黒の知識」を抽出し、学生ネットワークの学習を指導する。
一見異なる自己超越的なタスクが、単純だが強力なソリューションとして機能することを示します。
これらの自己超越信号の類似性を補助的タスクとして活用することにより、隠された情報を教師から生徒に効果的に転送することができる。
論文 参考訳(メタデータ) (2020-06-12T12:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。