論文の概要: Harvesting energy from turbulent winds with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.13961v1
- Date: Wed, 18 Dec 2024 15:40:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:22:50.830248
- Title: Harvesting energy from turbulent winds with Reinforcement Learning
- Title(参考訳): 強化学習による乱流風からのハーベストングエネルギー
- Authors: Lorenzo Basile, Maria Grazia Berni, Antonio Celani,
- Abstract要約: エアボーン・ウィンド・エナジー(Airborne Wind Energy, AWE)は、高高度風力を利用した新技術である。
AWEは地上ステーションに繋ぎ、風によって駆動される飛行装置に基づいており、機械エネルギーを発電機で電気エネルギーに変換する。
我々の目標は、これらのテクニックを強化学習(RL)に基づくアプローチに置き換える可能性を探ることである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Airborne Wind Energy (AWE) is an emerging technology designed to harness the power of high-altitude winds, offering a solution to several limitations of conventional wind turbines. AWE is based on flying devices (usually gliders or kites) that, tethered to a ground station and driven by the wind, convert its mechanical energy into electrical energy by means of a generator. Such systems are usually controlled by manoeuvering the kite so as to follow a predefined path prescribed by optimal control techniques, such as model-predictive control. These methods are strongly dependent on the specific model at use and difficult to generalize, especially in unpredictable conditions such as the turbulent atmospheric boundary layer. Our aim is to explore the possibility of replacing these techniques with an approach based on Reinforcement Learning (RL). Unlike traditional methods, RL does not require a predefined model, making it robust to variability and uncertainty. Our experimental results in complex simulated environments demonstrate that AWE agents trained with RL can effectively extract energy from turbulent flows, relying on minimal local information about the kite orientation and speed relative to the wind.
- Abstract(参考訳): エアボーン・ウィンド・エナジー (Airborne Wind Energy, AWE) は、高高度風力を利用するために設計された新興技術であり、従来の風力タービンのいくつかの制限に対する解決策を提供する。
AWEは、地上ステーションに繋がれ、風によって駆動される飛行装置(通常はグライダーまたはkit)に基づいており、機械エネルギーを発電機で電気エネルギーに変換する。
このようなシステムは通常、モデル予測制御のような最適制御技術によって規定された経路に従うように、kitを操作することによって制御される。
これらの手法は使用中の特定のモデルに強く依存しており、特に乱流境界層のような予測不可能な条件下では一般化が困難である。
我々の目的は、これらのテクニックを強化学習(RL)に基づくアプローチに置き換える可能性を探ることである。
従来の方法とは異なり、RLは事前定義されたモデルを必要としないため、可変性と不確実性に対して堅牢である。
複雑なシミュレーション環境における実験結果から,RLで訓練したAWEエージェントは,風に対するkit方向と速度に関する最小限の局所情報に頼って,乱流からのエネルギーを効果的に抽出できることが示された。
関連論文リスト
- Deep Reinforcement Learning for Multi-Objective Optimization: Enhancing Wind Turbine Energy Generation while Mitigating Noise Emissions [0.4218593777811082]
風力タービンの深部強化学習を用いたトルクピッチ制御フレームワークを開発した。
我々は、風力タービンパラメータの正確な制御を可能にするために、ブレード要素運動量解決器と組み合わされた二重深度Q-ラーニングを用いる。
論文 参考訳(メタデータ) (2024-07-18T09:21:51Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
風力発電は、再生可能、汚染のないその他の利点により、世界中の注目を集めている。
正確な風力発電予測(WPF)は、電力系統の運用における電力変動を効果的に低減することができる。
既存の手法は主に短期的な予測のために設計されており、効果的な時空間的特徴増強が欠如している。
論文 参考訳(メタデータ) (2023-05-30T04:03:15Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformerは元々自然言語処理用に開発されたもので、コンピュータビジョンでも大きな成功を収めている。
既存の開発をアーキテクチャ拡張と軌道最適化の2つのカテゴリに分類する。
ロボット操作,テキストベースのゲーム,ナビゲーション,自律運転におけるTRLの主な応用について検討する。
論文 参考訳(メタデータ) (2022-12-29T03:15:59Z) - XAI for transparent wind turbine power curve models [0.0]
我々はShapley値とXAIを使って、機械学習モデルが運用風力タービンデータから学んだ戦略を明らかにする。
この結果から,テストセットのパフォーマンスを重視した,より大規模なモデルアーキテクチャへのトレンドが,物理的に理解不能なモデル戦略をもたらすことが判明した。
本稿では,風力タービン性能モニタリングの文脈における根本原因解析の実践的手法を提案する。
論文 参考訳(メタデータ) (2022-10-21T16:59:06Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
本稿では,ディープラーニングを通じて事前学習した表現を組み込むことで,オンラインでの迅速な適応を可能にする学習ベースのアプローチを提案する。
Neural-Flyは、最先端の非線形かつ適応的なコントローラよりもかなり少ないトラッキングエラーで正確な飛行制御を実現する。
論文 参考訳(メタデータ) (2022-05-13T21:55:28Z) - Optimizing Airborne Wind Energy with Reinforcement Learning [0.0]
強化学習(Reinforcement Learning)は、システムの事前の知識を必要とせずに、観察と利益ある行動とを関連付ける技術である。
シミュレーション環境において、強化学習は、遠距離で車両を牽引できるように、カイトを効率的に制御する方法を見出した。
論文 参考訳(メタデータ) (2022-03-27T10:28:16Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
風力タービンの健全性解析のための2つの新しい手法を提案する。
第1の方法は、比較的高低電力生産の減少または増加を評価することを目的とする。
第2の方法は抽出された概念の全体的ドリフトを評価する。
論文 参考訳(メタデータ) (2021-12-09T14:04:55Z) - Machine Learning for Mechanical Ventilation Control (Extended Abstract) [52.65490904484772]
機械的換気はICUで最も広く用いられている治療法の1つである。
人工呼吸器は、所定の気道圧の軌跡に従って患者の肺に空気を注入しなければならない。
データ駆動型アプローチは、人工呼吸器から収集したデータに基づいて訓練されたシミュレーターをトレーニングすることで、侵襲的人工呼吸器を制御することを学ぶ。
この方法は、一般的な強化学習アルゴリズムより優れており、PIDよりも正確で堅牢な物理的換気装置も制御できる。
論文 参考訳(メタデータ) (2021-11-19T20:54:41Z) - Scalable Optimization for Wind Farm Control using Coordination Graphs [5.56699571220921]
風力発電の制御装置は、グリッドオペレータによって課される電力需要と農場の電力生産を一致させるために必要である。
風力タービン間の複雑な依存関係が存在するため、これは非自明な最適化問題である。
本研究では,スパースな風力場構造を利用して最適化問題を推定する風力場制御の新しい学習方法を提案する。
論文 参考訳(メタデータ) (2021-01-19T20:12:30Z) - Hybrid Neuro-Evolutionary Method for Predicting Wind Turbine Power
Output [6.411829871947649]
我々は,スウェーデンのオンショア風力発電所から出力される電力を推定するために,SCADAシステムにおける履歴データを入力として利用する。
風のパターンが非線形で多様であるという事前の知識により、我々は自己適応微分進化(SaDE)アルゴリズムを組み合わせる。
私たちのアプローチは、そのアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-04-02T04:22:22Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。