Oscillators with imaginary coupling: spectral functions in quantum mechanics and quantum field theory
- URL: http://arxiv.org/abs/2412.14064v1
- Date: Wed, 18 Dec 2024 17:09:30 GMT
- Title: Oscillators with imaginary coupling: spectral functions in quantum mechanics and quantum field theory
- Authors: Bruno W. Mintz, Itai Y. Pinheiro, Rui Aquino,
- Abstract summary: Non-hermitian hamiltonians with $calPT$-symmetry can have both real spectra and unitary time evolution.
We analyze two-point correlation functions and their associated K"allen-Lehmann representation.
We conjecture that positivity violation of some spectral functions of the theory could be a generic sign of the existence of complex pairs of energy eigenvalues.
- Score: 0.0
- License:
- Abstract: The axioms of Quantum Mechanics require that the hamiltonian of any closed system is self-adjoint, so that energy levels are real and time evolution preserves probability. On the other hand, non-hermitian hamiltonians with ${\cal{PT}}$-symmetry can have both real spectra and unitary time evolution. In this paper, we study in detail a pair of quantum oscillators coupled by an imaginary bilinear term, both in quantum mechanics and in quantum field theory. We discuss explicitly how such hamiltonians lead to perfectly sound physical theories with real spectra and unitary time evolution, in spite of their non-hermiticity. We also analyze two-point correlation functions and their associated K\"allen-Lehmann representation. In particular, we discuss the intimate relation between positivity violation of the spectral functions and the non-observability of operators in a given correlation function. Finally, we conjecture that positivity violation of some spectral functions of the theory could be a generic sign of the existence of complex pairs of energy eigenvalues (i.e., a ${\cal{PT}}$-broken phase) somewhere in its parameter space.
Related papers
- The Quantum Wave Function as a Complex Probability Distribution [0.0]
We show that the wave function and its complex conjugate can be interpreted as complex probability distributions.
It is suggested that embracing the idea of processes in quantum theory may explain the reasons for the appearance of classical behavior in large objects.
arXiv Detail & Related papers (2025-02-14T19:39:06Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - Quantum Hamilton-Jacobi Theory, Spectral Path Integrals and Exact-WKB [0.0]
Hamilton-Jacobi theory is a powerful formalism, but its utility is not explored in quantum theory beyond the correspondence principle.
We propose a new way to perform path integrals in quantum mechanics by using a quantum version of Hamilton-Jacobi theory.
arXiv Detail & Related papers (2024-06-12T02:50:43Z) - Structural Stability Hypothesis of Dual Unitary Quantum Chaos [0.0]
spectral correlations over small enough energy scales are described by random matrix theory.
We consider fate of this property when moving from dual-unitary to generic quantum circuits.
arXiv Detail & Related papers (2024-02-29T12:25:29Z) - Quantizing the Quantum Uncertainty [0.0]
We discuss the quantization of the quantum uncertainty as an operator acting on wave-functions over field space.
We show how this spectrum appears in the value of the coupling of the effective conformal potential driving the evolution of extended Gaussian wave-packets.
We conclude with an open question: is it possible to see experimental signatures of the quantization of the quantum uncertainty in non-relativistic physics?
arXiv Detail & Related papers (2023-07-03T14:40:14Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Homological Quantum Mechanics [0.0]
We provide a formulation of quantum mechanics based on the cohomology of the Batalin-Vilkovisky algebra.
We derive the Unruh effect, illustrating that these methods are applicable to quantum field theory.
arXiv Detail & Related papers (2021-12-21T19:28:43Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.