Compositional Generalization Across Distributional Shifts with Sparse Tree Operations
- URL: http://arxiv.org/abs/2412.14076v1
- Date: Wed, 18 Dec 2024 17:20:19 GMT
- Title: Compositional Generalization Across Distributional Shifts with Sparse Tree Operations
- Authors: Paul Soulos, Henry Conklin, Mattia Opper, Paul Smolensky, Jianfeng Gao, Roland Fernandez,
- Abstract summary: We introduce a unified neurosymbolic architecture called the Differentiable Tree Machine.
We significantly increase the model's efficiency through the use of sparse vector representations of symbolic structures.
We enable its application beyond the restricted set of tree2tree problems to the more general class of seq2seq problems.
- Score: 77.5742801509364
- License:
- Abstract: Neural networks continue to struggle with compositional generalization, and this issue is exacerbated by a lack of massive pre-training. One successful approach for developing neural systems which exhibit human-like compositional generalization is \textit{hybrid} neurosymbolic techniques. However, these techniques run into the core issues that plague symbolic approaches to AI: scalability and flexibility. The reason for this failure is that at their core, hybrid neurosymbolic models perform symbolic computation and relegate the scalable and flexible neural computation to parameterizing a symbolic system. We investigate a \textit{unified} neurosymbolic system where transformations in the network can be interpreted simultaneously as both symbolic and neural computation. We extend a unified neurosymbolic architecture called the Differentiable Tree Machine in two central ways. First, we significantly increase the model's efficiency through the use of sparse vector representations of symbolic structures. Second, we enable its application beyond the restricted set of tree2tree problems to the more general class of seq2seq problems. The improved model retains its prior generalization capabilities and, since there is a fully neural path through the network, avoids the pitfalls of other neurosymbolic techniques that elevate symbolic computation over neural computation.
Related papers
- Shadow of the (Hierarchical) Tree: Reconciling Symbolic and Predictive Components of the Neural Code for Syntax [1.223779595809275]
I discuss the prospects of reconciling the neural code for hierarchical'vertical' syntax with linear and predictive 'horizontal' processes.
I provide a neurosymbolic mathematical model for how to inject symbolic representations into a neural regime encoding lexico-semantic statistical features.
arXiv Detail & Related papers (2024-12-02T08:44:16Z) - Mapping the Neuro-Symbolic AI Landscape by Architectures: A Handbook on Augmenting Deep Learning Through Symbolic Reasoning [11.418327158608664]
Symbolic techniques with statistical strengths is a long-standing problem in artificial intelligence.
Neuro-symbolic AI focuses on this integration where the methods are in particular neural networks.
We present the first mapping of symbolic techniques into families of frameworks based on their architectures.
arXiv Detail & Related papers (2024-10-29T14:35:59Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
We propose a list of desirable criteria for neuro symbolic systems and examine how some of the existing approaches address these criteria.
We then propose an extension to annotated generalized logic that allows for the creation of an equivalent neural architecture.
Unlike previous approaches that rely on continuous optimization for the training process, our framework is designed as a binarized neural network that uses discrete optimization.
arXiv Detail & Related papers (2023-02-23T17:39:46Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - A Neuro-vector-symbolic Architecture for Solving Raven's Progressive
Matrices [15.686742809374024]
Neuro-vector-symbolic architecture (NVSA) is proposed to combine the best of deep neural networks and symbolic logical reasoning.
We show that NVSA achieves a new record of 97.7% average accuracy in RAVEN, and 98.8% in I-RAVEN datasets, with two orders of magnitude faster execution than the symbolic logical reasoning on CPUs.
arXiv Detail & Related papers (2022-03-09T08:29:21Z) - Geometry Perspective Of Estimating Learning Capability Of Neural
Networks [0.0]
The paper considers a broad class of neural networks with generalized architecture performing simple least square regression with gradient descent (SGD)
The relationship between the generalization capability with the stability of the neural network has also been discussed.
By correlating the principles of high-energy physics with the learning theory of neural networks, the paper establishes a variant of the Complexity-Action conjecture from an artificial neural network perspective.
arXiv Detail & Related papers (2020-11-03T12:03:19Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
Prior methods learn the neural-symbolic models using reinforcement learning approaches.
We introduce the textbfgrammar model as a textitsymbolic prior to bridge neural perception and symbolic reasoning.
We propose a novel textbfback-search algorithm which mimics the top-down human-like learning procedure to propagate the error.
arXiv Detail & Related papers (2020-06-11T17:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.