Dynamical Screening of Local Spin Moments at Metal-Molecule Interfaces
- URL: http://arxiv.org/abs/2412.14078v1
- Date: Wed, 18 Dec 2024 17:23:38 GMT
- Title: Dynamical Screening of Local Spin Moments at Metal-Molecule Interfaces
- Authors: Sumanta Bhandary, Emiliano Poli, Gilberto Teobaldi, David D. O'Regan,
- Abstract summary: We show that the orbital-dependent hybridization and electron correlation together result in strong charge and spin fluctuations.
Our results highlight the importance of quantum fluctuations in metal-contacted molecular devices.
- Score: 0.0
- License:
- Abstract: Transition-metal phthalocyanine molecules have attracted considerable interest in the context of spintronics device development due to their amenability to diverse bonding regimes and their intrinsic magnetism. The latter is highly influenced by the quantum fluctuations that arise at the inevitable metal-molecule interface in a device architecture. In this study, we have systematically investigated the dynamical screening effects in phthalocyanine molecules hosting a series of transition-metal ions (Ti, V, Cr, Mn, Fe, Co, and Ni) in contact with the Cu(111) surface. Using comprehensive density functional theory plus Anderson's Impurity Model calculations, we show that the orbital-dependent hybridization and electron correlation together result in strong charge and spin fluctuations. While the instantaneous spin moments of the transition-metal ions are near atomic-like, we find that screening gives rise to considerable lowering or even quenching of these. Our results highlight the importance of quantum fluctuations in metal-contacted molecular devices, which may influence the results obtained from theoretical or experimental probes, depending on their possibly material-dependent characteristic sampling time-scales.
Related papers
- Engineered Chirality of One-Dimensional Nanowires [4.742859282764092]
The origin and function of chirality in DNA, proteins, and other building blocks of life represent a central question in biology.
We use reconfigurable nanoscale control over conductivity at the LaAlO$_3$/SrTiO$_3$ interface to create chiral electron potentials that explicitly lack mirror symmetry.
We interpret resonances as arising from an engineered axial spin-orbit interaction within the chiral region.
arXiv Detail & Related papers (2025-02-08T19:14:00Z) - Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.
This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Spatial Exciton Localization at Interfaces of Metal Nanoparticles and
Atomically Thin Semiconductors [0.0]
We analytically study the interaction between a nanostructure consisting of a metal nanoparticles and a monolayer of transition metal dichalcogenide.
For the combined system, we identify an effective eigenvalue equation that governs the center-of-mass motion of the dressed excitons in a plasmon-induced potential.
arXiv Detail & Related papers (2023-05-18T16:37:37Z) - Quantum Dynamics of Photoactive Transition Metal Complexes. A Case Study
of Model Reduction [0.0]
Quantum dynamics simulations using quantum chemically determined model Hamiltonians may provide such details.
We performed quantum dynamics simulations for a recently studied iron(II) homoleptic complex.
arXiv Detail & Related papers (2023-05-12T10:24:59Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Interplay of Structural Chirality, Electron Spin and Topological Orbital
in Chiral Molecular Spin Valves [0.0]
Chirality has been a property of central importance in chemistry and biology for more than a century, and is now taking on increasing relevance in condensed matter physics.
electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids.
This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications.
arXiv Detail & Related papers (2022-09-16T18:05:29Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.