論文の概要: Joint Perception and Prediction for Autonomous Driving: A Survey
- arxiv url: http://arxiv.org/abs/2412.14088v1
- Date: Wed, 18 Dec 2024 17:34:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:45:56.067712
- Title: Joint Perception and Prediction for Autonomous Driving: A Survey
- Title(参考訳): 自律運転における共同認識と予測 : アンケート調査より
- Authors: Lucas Dal'Col, Miguel Oliveira, Vítor Santos,
- Abstract要約: 知覚と予測モジュールは自律運転システムの重要な構成要素である。
伝統的に、これらのタスクは独立して開発され、最適化される。
本稿では,入力表現,シーンコンテキストモデリング,出力表現に基づいてアプローチを分類する分類法を提案する。
- 参考スコア(独自算出の注目度): 1.4630192509676043
- License:
- Abstract: Perception and prediction modules are critical components of autonomous driving systems, enabling vehicles to navigate safely through complex environments. The perception module is responsible for perceiving the environment, including static and dynamic objects, while the prediction module is responsible for predicting the future behavior of these objects. These modules are typically divided into three tasks: object detection, object tracking, and motion prediction. Traditionally, these tasks are developed and optimized independently, with outputs passed sequentially from one to the next. However, this approach has significant limitations: computational resources are not shared across tasks, the lack of joint optimization can amplify errors as they propagate throughout the pipeline, and uncertainty is rarely propagated between modules, resulting in significant information loss. To address these challenges, the joint perception and prediction paradigm has emerged, integrating perception and prediction into a unified model through multi-task learning. This strategy not only overcomes the limitations of previous methods, but also enables the three tasks to have direct access to raw sensor data, allowing richer and more nuanced environmental interpretations. This paper presents the first comprehensive survey of joint perception and prediction for autonomous driving. We propose a taxonomy that categorizes approaches based on input representation, scene context modeling, and output representation, highlighting their contributions and limitations. Additionally, we present a qualitative analysis and quantitative comparison of existing methods. Finally, we discuss future research directions based on identified gaps in the state-of-the-art.
- Abstract(参考訳): 知覚と予測モジュールは自律走行システムの重要なコンポーネントであり、複雑な環境を安全に走行することができる。
知覚モジュールは静的および動的オブジェクトを含む環境を知覚し、予測モジュールは将来のオブジェクトの振る舞いを予測する。
これらのモジュールは通常、オブジェクト検出、オブジェクト追跡、動作予測の3つのタスクに分けられる。
伝統的に、これらのタスクは独立して開発され、最適化され、出力は1つから次へと順次受け継がれる。
しかし、このアプローチには重大な制限がある: 計算資源はタスク間で共有されず、共同最適化の欠如は、パイプライン全体に伝播するエラーを増幅し、不確実性はモジュール間で伝播されることがほとんどなく、結果として重大な情報損失をもたらす。
これらの課題に対処するため、マルチタスク学習を通じて認識と予測を統一モデルに統合し、共同認識と予測パラダイムが誕生した。
この戦略は、従来の手法の限界を克服するだけでなく、3つのタスクが生のセンサーデータに直接アクセスできるようにし、より豊かで微妙な環境解釈を可能にする。
本稿では,自律運転における共同認識と予測に関する総合的な調査を初めて行った。
本稿では、入力表現、シーンコンテキストモデリング、出力表現に基づいてアプローチを分類し、その貢献と限界を強調する分類法を提案する。
さらに,既存手法の質的分析と定量的比較を行った。
最後に,最先端技術におけるギャップの特定に基づく今後の研究の方向性について論じる。
関連論文リスト
- DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Pixel State Value Network for Combined Prediction and Planning in
Interactive Environments [9.117828575880303]
本研究は,予測と計画を組み合わせた深層学習手法を提案する。
U-Netアーキテクチャを持つ条件付きGANは、2つの高解像度画像シーケンスを予測するために訓練される。
結果は、対立する目的の中で車線の変化のような複雑な状況において直感的な行動を示す。
論文 参考訳(メタデータ) (2023-10-11T17:57:13Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
エンドツーエンドの自動運転におけるモチベーション、ロードマップ、方法論、課題、今後のトレンドについて、270以上の論文を包括的に分析する。
マルチモダリティ、解釈可能性、因果的混乱、堅牢性、世界モデルなど、いくつかの重要な課題を掘り下げます。
基礎モデルと視覚前訓練の現在の進歩と、これらの技術をエンドツーエンドの駆動フレームワークに組み込む方法について論じる。
論文 参考訳(メタデータ) (2023-06-29T14:17:24Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
実世界の知覚入力を用いた予測手法の統一評価パイプラインを提案する。
我々の詳細な調査では、キュレートされたデータから知覚ベースのデータへ移行する際の大きなパフォーマンスギャップが明らかになりました。
論文 参考訳(メタデータ) (2023-06-15T17:03:14Z) - Distribution-aware Goal Prediction and Conformant Model-based Planning
for Safe Autonomous Driving [16.654299927694716]
本研究では,学習から学習までのタスクを,障害物認識と接地,分布認識の目標予測,モデルベース計画として再構築する。
CARLAシミュレータでは,CARNOVELベンチマークの最先端結果を報告する。
論文 参考訳(メタデータ) (2022-12-16T21:51:51Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
人間の軌道予測は、自動運転車、社会認識ロボット、およびビデオ監視アプリケーションの主要な構成要素である。
本稿では,過去の観測位置のみに作用する軽量な注意型リカレントバックボーンを提案する。
我々はU-Netアーキテクチャに基づく共通のゴールモジュールを使用し、シーン準拠の目的地を予測するために意味情報を抽出する。
論文 参考訳(メタデータ) (2022-04-25T11:12:37Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
交通参加者の行動の正確な予測は、自動運転車にとって必須の能力である。
本稿では, セマンティクスとドメイン知識を活かして, 様々な運転環境に対する新しい汎用表現を提案する。
論文 参考訳(メタデータ) (2020-04-07T00:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。