High-purity quantum optomechanics at room temperature
- URL: http://arxiv.org/abs/2412.14117v1
- Date: Wed, 18 Dec 2024 18:04:04 GMT
- Title: High-purity quantum optomechanics at room temperature
- Authors: Lorenzo Dania, Oscar Schmitt Kremer, Johannes Piotrowski, Davide Candoli, Jayadev Vijayan, Oriol Romero-Isart, Carlos Gonzalez-Ballestero, Lukas Novotny, Martin Frimmer,
- Abstract summary: In this work, we cool the mega-hertz-frequency librational mode of an optically levitated silica nanoparticles from room temperature to its quantum ground state.
We infer a phonon population of 0.04 quanta under optimal conditions, corresponding to a state purity of 92%.
Our work establishes a platform for high-purity quantum optomechanics at room temperature.
- Score: 0.0
- License:
- Abstract: Exploiting quantum effects of mechanical motion, such as backaction evading measurements or squeezing, requires preparation of the oscillator in a high-purity state. The largest state purities in optomechanics to date have relied on cryogenic cooling, combined with coupling to electromagnetic resonators driven with a coherent radiation field. In this work, we cool the mega-hertz-frequency librational mode of an optically levitated silica nanoparticle from room temperature to its quantum ground state. Cooling is realized by coherent scattering into a Fabry-Perot cavity. We use sideband thermometry to infer a phonon population of 0.04 quanta under optimal conditions, corresponding to a state purity of 92%. The purity reached by our room-temperature experiment exceeds the performance offered by mechanically clamped oscillators in a cryogenic environment. Our work establishes a platform for high-purity quantum optomechanics at room temperature.
Related papers
- Motional sideband asymmetry of a solid-state mechanical resonator at room temperature [0.0]
We sideband-cool a membrane-in-the-middle system close to the quantum ground state from room temperature.
We observe motional sideband asymmetry in a dual-homodyne measurement.
arXiv Detail & Related papers (2024-08-12T21:23:38Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Room-temperature quantum optomechanics using an ultra-low noise cavity [0.0]
We demonstrate optomechanical squeezing at room temperature in a phononic-engineered membrane-in-the-middle system.
By using a high finesse cavity whose mirrors are patterned with phononic crystal structures, we reduce cavity frequency noise by more than 700-fold.
These advances enable operation within a factor of 2.5 of the Heisenberg limit, leading to squeezing of the probing field by 1.09 dB below the vacuum fluctuations.
arXiv Detail & Related papers (2023-09-26T16:27:32Z) - An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
We experimentally demonstrate how to generate a state in condensed matter at moderate cryogenic temperatures.
This state is then used to efficiently remove microwave photons from a cavity.
Such an "anti-maser" device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures.
arXiv Detail & Related papers (2023-07-24T11:12:29Z) - Optical self-cooling of a membrane oscillator in a cavity optomechanical
experiment at room temperature [0.0]
Thermal noise is a major obstacle to observing quantum behavior in macroscopic systems.
We show that further cooling is prevented by the excess classical noise of our laser source.
arXiv Detail & Related papers (2023-05-24T08:56:23Z) - Brillouin optomechanics in the quantum ground state [0.0]
Bulk acoustic wave (BAW) resonators are attractive as intermediaries in a microwave-to-optical transducer.
In this work, we demonstrate ground state operation of a Brillouin optomechanical system composed of a quartz BAW resonator inside an optical cavity.
arXiv Detail & Related papers (2023-03-08T15:56:52Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z) - Quantum control of a nanoparticle optically levitated in cryogenic free
space [0.0]
Tests of quantum mechanics on a macroscopic scale require extreme control over mechanical motion and its decoherence.
In this work, we optically levitate a femto-gram dielectric particle in cryogenic free space.
We cool its center-of-mass motion by measurement-based feedback to an average occupancy of 0.65 motional quanta, corresponding to a state purity of 43%.
arXiv Detail & Related papers (2021-03-05T18:12:50Z) - Reservoir engineering with arbitrary temperatures for spin systems and
quantum thermal machine with maximum efficiency [50.591267188664666]
Reservoir engineering is an important tool for quantum information science and quantum thermodynamics.
We employ this technique to engineer reservoirs with arbitrary (effective) negative and positive temperatures for a single spin system.
arXiv Detail & Related papers (2020-01-28T00:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.