Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective
- URL: http://arxiv.org/abs/2412.14135v1
- Date: Wed, 18 Dec 2024 18:24:47 GMT
- Title: Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective
- Authors: Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo, Xuanjing Huang, Xipeng Qiu,
- Abstract summary: OpenAI has claimed that the main techinique behinds o1 is the reinforcement learning.
This paper analyzes the roadmap to achieving o1 from the perspective of reinforcement learning.
- Score: 77.94874338927492
- License:
- Abstract: OpenAI o1 represents a significant milestone in Artificial Inteiligence, which achieves expert-level performances on many challanging tasks that require strong reasoning ability.OpenAI has claimed that the main techinique behinds o1 is the reinforcement learining. Recent works use alternative approaches like knowledge distillation to imitate o1's reasoning style, but their effectiveness is limited by the capability ceiling of the teacher model. Therefore, this paper analyzes the roadmap to achieving o1 from the perspective of reinforcement learning, focusing on four key components: policy initialization, reward design, search, and learning. Policy initialization enables models to develop human-like reasoning behaviors, equipping them with the ability to effectively explore solution spaces for complex problems. Reward design provides dense and effective signals via reward shaping or reward modeling, which is the guidance for both search and learning. Search plays a crucial role in generating high-quality solutions during both training and testing phases, which can produce better solutions with more computation. Learning utilizes the data generated by search for improving policy, which can achieve the better performance with more parameters and more searched data. Existing open-source projects that attempt to reproduce o1 can be seem as a part or a variant of our roadmap. Collectively, these components underscore how learning and search drive o1's advancement, making meaningful contributions to the development of LLM.
Related papers
- O1 Embedder: Let Retrievers Think Before Action [28.583031173137428]
We propose O1 Embedder, which generates useful thoughts for the input query before making retrieval for the target documents.
Our approach is evaluated by comprehensive experiments, where substantial improvements are achieved across 12 popular datasets.
These results highlight O1 Embedder's remarkable accuracy and generalizability, paving the way for the development of next-generation IR foundation models.
arXiv Detail & Related papers (2025-02-11T13:48:10Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.
We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
We show that OpenAI's o1 model has achieved the best performance on most datasets.
We also provide a detailed analysis on several reasoning benchmarks.
arXiv Detail & Related papers (2024-10-17T15:09:03Z) - O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey.
Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects.
We propose the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process.
arXiv Detail & Related papers (2024-10-08T15:13:01Z) - Efficient Reinforcement Learning via Decoupling Exploration and Utilization [6.305976803910899]
Reinforcement Learning (RL) has achieved remarkable success across multiple fields and applications, including gaming, robotics, and autonomous vehicles.
In this work, our aim is to train agent with efficient learning by decoupling exploration and utilization, so that agent can escaping the conundrum of suboptimal Solutions.
The above idea is implemented in the proposed OPARL (Optimistic and Pessimistic Actor Reinforcement Learning) algorithm.
arXiv Detail & Related papers (2023-12-26T09:03:23Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - The Information Geometry of Unsupervised Reinforcement Learning [133.20816939521941]
Unsupervised skill discovery is a class of algorithms that learn a set of policies without access to a reward function.
We show that unsupervised skill discovery algorithms do not learn skills that are optimal for every possible reward function.
arXiv Detail & Related papers (2021-10-06T13:08:36Z) - Efficient Deep Learning: A Survey on Making Deep Learning Models
Smaller, Faster, and Better [0.0]
With the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have increased significantly.
We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency.
We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support.
arXiv Detail & Related papers (2021-06-16T17:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.