Accelerating exploration and representation learning with offline
pre-training
- URL: http://arxiv.org/abs/2304.00046v1
- Date: Fri, 31 Mar 2023 18:03:30 GMT
- Title: Accelerating exploration and representation learning with offline
pre-training
- Authors: Bogdan Mazoure, Jake Bruce, Doina Precup, Rob Fergus, Ankit Anand
- Abstract summary: We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
- Score: 52.6912479800592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential decision-making agents struggle with long horizon tasks, since
solving them requires multi-step reasoning. Most reinforcement learning (RL)
algorithms address this challenge by improved credit assignment, introducing
memory capability, altering the agent's intrinsic motivation (i.e. exploration)
or its worldview (i.e. knowledge representation). Many of these components
could be learned from offline data. In this work, we follow the hypothesis that
exploration and representation learning can be improved by separately learning
two different models from a single offline dataset. We show that learning a
state representation using noise-contrastive estimation and a model of
auxiliary reward separately from a single collection of human demonstrations
can significantly improve the sample efficiency on the challenging NetHack
benchmark. We also ablate various components of our experimental setting and
highlight crucial insights.
Related papers
- Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors [10.454194186065195]
Reinforcement learning has achieved promising results on robotic control tasks but struggles to leverage information effectively.
Recent works construct auxiliary losses based on reconstruction or mutual information to extract joint representations from multiple sensory inputs.
We argue that compressing information in the learned joint representations about raw multimodal observations is helpful.
arXiv Detail & Related papers (2024-10-23T04:32:37Z) - A Dual Approach to Imitation Learning from Observations with Offline Datasets [19.856363985916644]
Demonstrations are an effective alternative to task specification for learning agents in settings where designing a reward function is difficult.
We derive DILO, an algorithm that can leverage arbitrary suboptimal data to learn imitating policies without requiring expert actions.
arXiv Detail & Related papers (2024-06-13T04:39:42Z) - Less is More: High-value Data Selection for Visual Instruction Tuning [127.38740043393527]
We propose a high-value data selection approach TIVE, to eliminate redundancy within the visual instruction data and reduce the training cost.
Our approach using only about 15% data can achieve comparable average performance to the full-data fine-tuned model across eight benchmarks.
arXiv Detail & Related papers (2024-03-14T16:47:25Z) - Towards A Unified Agent with Foundation Models [18.558328028366816]
We investigate how to embed and leverage such abilities in Reinforcement Learning (RL) agents.
We design a framework that uses language as the core reasoning tool, exploring how this enables an agent to tackle a series of fundamental RL challenges.
We demonstrate substantial performance improvements over baselines in exploration efficiency and ability to reuse data from offline datasets.
arXiv Detail & Related papers (2023-07-18T22:37:30Z) - SeMAIL: Eliminating Distractors in Visual Imitation via Separated Models [22.472167814814448]
We propose a new model-based imitation learning algorithm named Separated Model-based Adversarial Imitation Learning (SeMAIL)
Our method achieves near-expert performance on various visual control tasks with complex observations and the more challenging tasks with different backgrounds from expert observations.
arXiv Detail & Related papers (2023-06-19T04:33:44Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
Recent works have shown that wider and deeper models benefit more from self-supervised learning than smaller models.
We propose Distill-on-the-Go (DoGo), a self-supervised learning paradigm using single-stage online knowledge distillation.
Our results show significant performance gain in the presence of noisy and limited labels.
arXiv Detail & Related papers (2021-04-20T09:59:23Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.