Detecting Cognitive Impairment and Psychological Well-being among Older Adults Using Facial, Acoustic, Linguistic, and Cardiovascular Patterns Derived from Remote Conversations
- URL: http://arxiv.org/abs/2412.14194v3
- Date: Thu, 09 Jan 2025 20:16:41 GMT
- Title: Detecting Cognitive Impairment and Psychological Well-being among Older Adults Using Facial, Acoustic, Linguistic, and Cardiovascular Patterns Derived from Remote Conversations
- Authors: Xiaofan Mu, Salman Seyedi, Iris Zheng, Zifan Jiang, Liu Chen, Bolaji Omofojoye, Rachel Hershenberg, Allan I. Levey, Gari D. Clifford, Hiroko H. Dodge, Hyeokhyen Kwon,
- Abstract summary: The aging society urgently requires scalable methods to monitor cognitive decline and identify social and psychological factors indicative of dementia risk in older adults.
Recent advances in machine learning offer new opportunities to remotely detect cognitive impairment and assess associated factors, such as neuroticism and psychological well-being.
Our experiment showed that speech and language patterns were more useful for quantifying cognitive impairment, whereas facial expression and cardiovascular patterns were more useful for quantifying personality and psychological well-being.
- Score: 5.923344966877598
- License:
- Abstract: The aging society urgently requires scalable methods to monitor cognitive decline and identify social and psychological factors indicative of dementia risk in older adults. Our machine learning (ML) models captured facial, acoustic, linguistic, and cardiovascular features from 39 individuals with normal cognition or Mild Cognitive Impairment derived from remote video conversations and classified cognitive status, social isolation, neuroticism, and psychological well-being. Our model could distinguish Clinical Dementia Rating Scale (CDR) of 0.5 (vs. 0) with 0.78 area under the receiver operating characteristic curve (AUC), social isolation with 0.75 AUC, neuroticism with 0.71 AUC, and negative affect scales with 0.79 AUC. Recent advances in machine learning offer new opportunities to remotely detect cognitive impairment and assess associated factors, such as neuroticism and psychological well-being. Our experiment showed that speech and language patterns were more useful for quantifying cognitive impairment, whereas facial expression and cardiovascular patterns using photoplethysmography (PPG) were more useful for quantifying personality and psychological well-being.
Related papers
- Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.
We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.
Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - Auto Detecting Cognitive Events Using Machine Learning on Pupillary Data [0.0]
Pupil size is a valuable indicator of cognitive workload, reflecting changes in attention and arousal governed by the autonomic nervous system.
This study explores the potential of using machine learning to automatically detect cognitive events experienced using individuals.
arXiv Detail & Related papers (2024-10-18T04:54:46Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - Automatic detection of cognitive impairment in elderly people using an entertainment chatbot with Natural Language Processing capabilities [8.032202552952299]
We present an intelligent conversational system for entertaining elderly people with news of their interest that monitors cognitive impairment transparently.
We create dialogue flows automatically from updated news items using Natural Language Generation techniques.
The system infers the gold standard of the answers to the questions, so it can assess cognitive capabilities automatically.
arXiv Detail & Related papers (2024-05-28T19:17:48Z) - Assessing cognitive function among older adults using machine learning and wearable device data: a feasibility study [3.0872517448897465]
We developed prediction models to differentiate older adults with normal cognition from those with poor cognition.
Activity and sleep parameters were also more strongly associated with processing speed, working memory, and attention compared to other cognitive fluency.
arXiv Detail & Related papers (2023-08-28T00:07:55Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - Multi-modal deep learning system for depression and anxiety detection [4.539240676216187]
We propose a multi-modal system for the screening of depression and anxiety from self-administered speech tasks.
We find that augmenting hand-crafted features with deep-learned features improves our overall classification F1 score.
arXiv Detail & Related papers (2022-12-30T00:02:58Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
We propose a CogAlign approach to integrate cognitive language processing signals into natural language processing models.
We show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets.
arXiv Detail & Related papers (2021-06-10T07:10:25Z) - Predicting Early Indicators of Cognitive Decline from Verbal Utterances [2.387625146176821]
Dementia is a group of irreversible, chronic, and progressive neurodegenerative disorders resulting in impaired memory, communication, and thought processes.
We measure the feasibility of using the linguistic characteristics of verbal utterances elicited during neuropsychological exams to distinguish between elderly control groups, people with MCI, people diagnosed with possible Alzheimer's disease (AD), and probable AD.
Our experiments show that a combination of contextual and psycholinguistic features extracted by a Support Vector Machine improved distinguishing the verbal utterances of elderly controls, people with MCI, possible AD, and probable AD.
arXiv Detail & Related papers (2020-11-19T02:24:11Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.