Predicting Early Indicators of Cognitive Decline from Verbal Utterances
- URL: http://arxiv.org/abs/2012.02029v2
- Date: Wed, 24 Feb 2021 14:42:59 GMT
- Title: Predicting Early Indicators of Cognitive Decline from Verbal Utterances
- Authors: Swati Padhee, Anurag Illendula, Megan Sadler, Valerie L.Shalin, Tanvi
Banerjee, Krishnaprasad Thirunarayan, William L. Romine
- Abstract summary: Dementia is a group of irreversible, chronic, and progressive neurodegenerative disorders resulting in impaired memory, communication, and thought processes.
We measure the feasibility of using the linguistic characteristics of verbal utterances elicited during neuropsychological exams to distinguish between elderly control groups, people with MCI, people diagnosed with possible Alzheimer's disease (AD), and probable AD.
Our experiments show that a combination of contextual and psycholinguistic features extracted by a Support Vector Machine improved distinguishing the verbal utterances of elderly controls, people with MCI, possible AD, and probable AD.
- Score: 2.387625146176821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dementia is a group of irreversible, chronic, and progressive
neurodegenerative disorders resulting in impaired memory, communication, and
thought processes. In recent years, clinical research advances in brain aging
have focused on the earliest clinically detectable stage of incipient dementia,
commonly known as mild cognitive impairment (MCI). Currently, these disorders
are diagnosed using a manual analysis of neuropsychological examinations. We
measure the feasibility of using the linguistic characteristics of verbal
utterances elicited during neuropsychological exams of elderly subjects to
distinguish between elderly control groups, people with MCI, people diagnosed
with possible Alzheimer's disease (AD), and probable AD. We investigated the
performance of both theory-driven psycholinguistic features and data-driven
contextual language embeddings in identifying different clinically diagnosed
groups. Our experiments show that a combination of contextual and
psycholinguistic features extracted by a Support Vector Machine improved
distinguishing the verbal utterances of elderly controls, people with MCI,
possible AD, and probable AD. This is the first work to identify four clinical
diagnosis groups of dementia in a highly imbalanced dataset. Our work shows
that machine learning algorithms built on contextual and psycholinguistic
features can learn the linguistic biomarkers from verbal utterances and assist
clinical diagnosis of different stages and types of dementia, even with limited
data.
Related papers
- Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
The early identification of symptoms of memory disorders plays a significant role in ensuring the well-being of populations.
The lack of standardized speech tests in clinical settings has led to a growing emphasis on developing automatic machine learning techniques for analyzing naturally spoken language.
The work presents an approach related to feature selection, allowing for the automatic selection of the essential features required for diagnosis from the Geneva minimalistic acoustic parameter set and relative speech pauses.
arXiv Detail & Related papers (2024-02-02T17:06:03Z) - A Digital Language Coherence Marker for Monitoring Dementia [14.580879594539859]
We propose methods to capture language coherence as a cost-effective, human-interpretable digital marker.
We compare language coherence patterns between people with dementia and healthy controls.
The coherence marker shows a significant difference between people with mild cognitive impairment, those with Alzheimer's Disease and healthy controls.
arXiv Detail & Related papers (2023-10-14T17:10:19Z) - Assessing Language Disorders using Artificial Intelligence: a Paradigm
Shift [0.13393465195776774]
Speech, language, and communication deficits are present in most neurodegenerative syndromes.
We argue that using machine learning methodologies, natural language processing, and modern artificial intelligence (AI) for Language Assessment is an improvement over conventional manual assessment.
arXiv Detail & Related papers (2023-05-31T17:20:45Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - Multi-modal fusion with gating using audio, lexical and disfluency
features for Alzheimer's Dementia recognition from spontaneous speech [11.34426502082293]
This paper is a submission to the Alzheimer's Dementia Recognition through Spontaneous Speech (ADReSS) challenge.
It aims to develop methods that can assist in the automated prediction of severity of Alzheimer's Disease from speech data.
arXiv Detail & Related papers (2021-06-17T17:20:57Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Identification of Dementia Using Audio Biomarkers [15.740689461116762]
The objective of this work is to use speech processing and machine learning techniques to automatically identify the stage of dementia.
Non-linguistic acoustic parameters are used for this purpose, making this a language independent approach.
We analyze the contribution of various types of acoustic features such as spectral, temporal, cepstral their feature-level fusion and selection towards the identification of dementia stage.
arXiv Detail & Related papers (2020-02-27T13:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.