Observation of extrinsic topological phases in Floquet photonic lattices
- URL: http://arxiv.org/abs/2412.14324v1
- Date: Wed, 18 Dec 2024 20:37:53 GMT
- Title: Observation of extrinsic topological phases in Floquet photonic lattices
- Authors: Rajesh Asapanna, Rabih El Sokhen, Albert F. Adiyatullin, Clément Hainaut, Pierre Delplace, Álvaro Gómez-León, Alberto Amo,
- Abstract summary: We report the observation of topological phases unique to discrete-step walks.
Our work opens new perspectives for the engineering of topological modes for particles subject to quantum walks.
- Score: 0.0
- License:
- Abstract: Discrete-step walks describe the dynamics of particles in a lattice subject to hopping or splitting events at discrete times. Despite being of primordial interest to the physics of quantum walks, the topological properties arising from their discrete-step nature have been hardly explored. Here we report the observation of topological phases unique to discrete-step walks. We use light pulses in a double-fibre ring setup whose dynamics maps into a two-dimensional lattice subject to discrete splitting events. We show that the number of edge states is not simply described by the bulk invariants of the lattice (i.e., the Chern number and the Floquet winding number) as would be the case in static lattices and in lattices subject to smooth modulations. The number of edge states is also determined by a topological invariant associated to the discrete-step unitary operators acting at the edges of the lattice. This situation goes beyond the usual bulk-edge correspondence and allows manipulating the number of edge states without the need to go through a gap closing transition. Our work opens new perspectives for the engineering of topological modes for particles subject to quantum walks.
Related papers
- Alternating quantum-emitter chains: Exceptional-point phase transition,
edge state, and quantum walks [0.0]
We study the long-range hopping limit of a one-dimensional array of $N$ equal-distanced quantum emitters in free space.
For two species of emitters in an alternating arrangement, the single excitation sector exhibits non-Hermitian spectral singularities known as exceptional points.
We unveil an unconventional phase transition, dubbed exceptional-point phase transition, from the collective to individual spontaneous emission behaviors.
arXiv Detail & Related papers (2023-05-25T13:45:30Z) - Investigation of a non-Hermitian edge burst with time-dependent
perturbation theory [0.6617341769966992]
Edge burst is a phenomenon in non-Hermitian quantum dynamics.
We investigate the evolution of real-space wave functions for this lattice system.
arXiv Detail & Related papers (2023-03-30T08:27:20Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Topological Euler class as a dynamical observable in optical lattices [0.0]
We show that the invariant $(xi)$ falls outside conventional symmetry-eigenvalue indicated phases.
We theoretically demonstrate that quenching with non-trivial Euler Hamiltonian results in stable monopole-antimonopole pairs.
Our results provide a basis for exploring new topologies and their interplay with crystalline symmetries in optical lattices beyond paradigmatic Chern insulators.
arXiv Detail & Related papers (2020-05-06T18:00:03Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Second-order topological insulator in a coinless discrete-time quantum
walk [3.7528520149256006]
We construct a two-dimensional coinless quantum walk to simulate second-order topological insulator with zero-dimensional corner states.
We show that both of the corner and edge states can be observed through the probability distribution of the walker.
We propose a possible experimental implementation to realize this discrete-time quantum walk in a three-dimensional integrated photonic circuits.
arXiv Detail & Related papers (2020-03-19T09:07:34Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.