論文の概要: Demonstrating dynamic surface codes
- arxiv url: http://arxiv.org/abs/2412.14360v1
- Date: Wed, 18 Dec 2024 21:56:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:30:55.390810
- Title: Demonstrating dynamic surface codes
- Title(参考訳): 動的表面符号の実証
- Authors: Alec Eickbusch, Matt McEwen, Volodymyr Sivak, Alexandre Bourassa, Juan Atalaya, Jahan Claes, Dvir Kafri, Craig Gidney, Christopher W. Warren, Jonathan Gross, Alex Opremcak, Nicholas Zobrist Kevin C. Miao, Gabrielle Roberts, Kevin J. Satzinger, Andreas Bengtsson, Matthew Neeley, William P. Livingston, Alex Greene, Rajeev, Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Trond I. Andersen, Markus Ansmann, Frank, Arute, Kunal Arya, Abraham Asfaw, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Alexander Bilmes, Jenna, Bovaird, Dylan Bowers, Leon Brill, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, Tim, Burger, Brian Burkett, Nicholas Bushnell, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Ben Chiaro, Liang-Ying Chih, Agnetta Y. Cleland, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander, L. Crook, Ben Curtin, Sayan Das, Alexander Del Toro Barba, Sean Demura, Laura De Lorenzo, Agustin Di Paolo, Paul Donohoe, Ilya K. Drozdov, Andrew Dunsworth, Aviv Moshe Elbag, Mahmoud Elzouka, Catherine Erickson, Vinicius S. Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin G. Fowler, Brooks Foxen, Suhas Ganjam, Gonzalo, Garcia, Robert Gasca, Élie Genois, William Giang, Dar Gilboa, Raja Gosula, Alejandro Grajales Dau, Dietrich, Graumann, Tan Ha, Steve Habegger, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Stephen Heslin, Paula Heu, Oscar Higgott, Reno Hiltermann, Jeremy Hilton, Hsin-Yuan Huang, Ashley Huff, William J. Huggins, Evan Jeffrey, Zhang Jiang, Xiaoxuan Jin, Cody Jones, Chaitali Joshi, Pavol Juhas, Andreas Kabel, Hui Kang, Amir, H. Karamlou, Kostyantyn Kechedzhi, Trupti Khaire, Tanuj Khattar, Mostafa Khezri, Seon Kim, Bryce Kobrin, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, Vladislav D. Kurilovich, David Landhuis, Tiano, Lange-Dei, Brandon W. Langley, Kim-Ming Lau, Justin Ledford, Kenny Lee, Brian J. Lester, Loïck Le Guevel, Wing, Yan Li, Alexander T. Lill, Aditya Locharla, Erik Lucero, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Cameron Maxfield, Jarrod R. McClean, Seneca Meeks, Anthony, Megrant, Reza Molavi, Sebastian Molina, Shirin Montazeri, Ramis Movassagh, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Logan Oas, Raymond Orosco, Kristoffer Ottosson, Alex Pizzuto, Rebecca Potter, Orion Pritchard, Chris Quintana, Ganesh Ramachandran, Matthew J. Reagor, David M. Rhodes, Eliott Rosenberg, Elizabeth Rossi, Kannan Sankaragomathi, Henry F. Schurkus, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Spencer Small, W. Clarke Smith, Sofia Springer, George Sterling, Jordan Suchard, Aaron Szasz, Alex Sztein, Douglas Thor, Eifu Tomita, Alfredo Torres, M. Mert Torunbalci, Abeer Vaishnav, Justin Vargas, Sergey, Vdovichev, Guifre Vidal, Catherine Vollgraff Heidweiller, Steven Waltman, Jonathan Waltz, Shannon X. Wang, Brayden Ware, Travis Weidel, Theodore White, Kristi Wong, Bryan W. K. Woo, Maddy Woodson, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Grayson Young, Adam Zalcman, Yaxing, Zhang, Ningfeng Zhu, Sergio Boixo, Julian Kelly, Vadim Smelyanskiy, Hartmut Neven, Dave Bacon, Zijun Chen, Paul V. Klimov, Pedram Roushan, Charles Neill, Yu Chen, Alexis Morvan,
- Abstract要約: 曲面符号の3つの時間力学的実装を実験的に実証した。
まず、曲面コードを六角格子上に埋め込んで、キュービットあたりの結合を4つから3つに減らした。
第二に、サーフェスコードを歩き、データの役割を交換し、各ラウンドごとにキュービットを測定し、蓄積した非計算エラーの組込み除去による誤り訂正を達成する。
第3に、従来のCNOTの代わりにiSWAPゲートを用いた表面コードを実現し、追加のオーバーヘッドを伴わずに、エラー訂正のための実行可能なゲートセットを拡張した。
- 参考スコア(独自算出の注目度): 138.1740645504286
- License:
- Abstract: A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has uncovered new codes and new code implementations. In this work, we experimentally demonstrate three time-dynamic implementations of the surface code, each offering a unique solution to hardware design challenges and introducing flexibility in surface code realization. First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three. Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors. Finally, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead. We measure the error suppression factor when scaling from distance-3 to distance-5 codes of $\Lambda_{35,\text{hex}} = 2.15(2)$, $\Lambda_{35,\text{walk}} = 1.69(6)$, and $\Lambda_{35,\text{iSWAP}} = 1.56(2)$, achieving state-of-the-art error suppression for each. With detailed error budgeting, we explore their performance trade-offs and implications for hardware design. This work demonstrates that dynamic circuit approaches satisfy the demands for fault-tolerance and opens new alternative avenues for scalable hardware design.
- Abstract(参考訳): 量子コンピューティングの顕著な特徴は、欠陥量子ビットにもかかわらず信頼性の高い計算の可能性である。
これは一般に静的シンドロームチェックを繰り返し適用し、論理情報の修正を許すことによって実装される量子エラー補正によって達成される。
近年,誤り訂正のための時間動的手法の開発により,新しいコードや新しいコード実装が明らかになった。
本研究は,ハードウェア設計の課題に対するユニークなソリューションを提供し,表面コード実現に柔軟性をもたらす表面コードの3つの時空実装を実験的に実証する。
まず、曲面コードを六角格子上に埋め込んで、キュービットあたりの結合を4つから3つに減らした。
第二に、サーフェスコードを歩き、データの役割を交換し、各ラウンドごとにキュービットを測定し、蓄積した非計算エラーの組込み除去による誤り訂正を達成する。
最後に、従来のCNOTの代わりにiSWAPゲートを用いた表面コードを実現し、追加のオーバーヘッドを伴わずに、エラー訂正のための実行可能なゲートセットを拡張した。
距離3から距離5へのスケーリング時のエラー抑制係数は、$\Lambda_{35,\text{hex}} = 2.15(2)$, $\Lambda_{35,\text{walk}} = 1.69(6)$, $\Lambda_{35,\text{iSWAP}} = 1.56(2)$である。
詳細なエラー予算化により、ハードウェア設計におけるパフォーマンス上のトレードオフと影響について検討する。
この研究は、動的回路アプローチがフォールトトレランスの要求を満たすことを示し、スケーラブルなハードウェア設計のための新しい代替手段を開放する。
関連論文リスト
- A Universal Circuit Set Using the $S_3$ Quantum Double [0.5231056284485742]
量子二重モデル $mathcalD(S_3)$ -- 特定の非アベリア位相コードを示す。
我々は$mathcalD(S_3)$の物理自由度を、新しい量子的誤り訂正符号にエンコードする。
我々の提案は, NISQ時代の普遍的位相量子計算を実現するための有望な経路を提供する。
論文 参考訳(メタデータ) (2024-11-14T18:58:41Z) - Architectures for Heterogeneous Quantum Error Correction Codes [13.488578754808676]
不均一なアーキテクチャは、普遍論理計算への明確な経路を提供する。
本研究では,アシラバスを用いてコード間データ移動のためのサーフェスコードとグロスコードを統合することを提案する。
アルゴリズムを特定の論理誤差率で実行する場合、物理量子ビットの最大6.42倍の減少を示す。
論文 参考訳(メタデータ) (2024-11-05T15:49:02Z) - Quantum error correction below the surface code threshold [107.92016014248976]
量子誤り訂正は、複数の物理量子ビットを論理量子ビットに結合することで、実用的な量子コンピューティングに到達するための経路を提供する。
本研究では, リアルタイムデコーダと統合された距離7符号と距離5符号の2つの面符号メモリを臨界閾値以下で動作させる。
以上の結果から,大規模なフォールトトレラント量子アルゴリズムの動作要件を実現する装置の性能が示唆された。
論文 参考訳(メタデータ) (2024-08-24T23:08:50Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
複数のコードサイズにわたる論理量子ビット性能のスケーリングの測定について報告する。
超伝導量子ビット系は、量子ビット数の増加による追加誤差を克服するのに十分な性能を有する。
量子誤り訂正は量子ビット数が増加するにつれて性能が向上し始める。
論文 参考訳(メタデータ) (2022-07-13T18:00:02Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z) - NISQ+: Boosting quantum computing power by approximating quantum error
correction [6.638758213186185]
我々は,短期量子コンピュータの計算能力を高める手法を設計する。
完全一致する誤り訂正機構を近似することにより、計算量を増やすことができる。
近距離量子システムにおいて、近似誤り復号をオンラインで実現できるという概念実証を実証する。
論文 参考訳(メタデータ) (2020-04-09T20:17:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。