Randomization Tests for Conditional Group Symmetry
- URL: http://arxiv.org/abs/2412.14391v1
- Date: Wed, 18 Dec 2024 22:51:23 GMT
- Title: Randomization Tests for Conditional Group Symmetry
- Authors: Kenny Chiu, Alex Sharp, Benjamin Bloem-Reddy,
- Abstract summary: This work initiates the study of nonparametric randomization tests for symmetry of a conditional distribution under the action of a specified locally compact group.
We develop a general framework for randomization tests with finite-sample Type I error control, using kernel methods, implement tests with finite-sample power lower bounds.
We study their properties on synthetic examples, and on applications to testing for symmetry in two problems from high-energy particle physics.
- Score: 2.2940141855172036
- License:
- Abstract: Symmetry plays a central role in the sciences, machine learning, and statistics. While statistical tests for the presence of distributional invariance with respect to groups have a long history, tests for conditional symmetry in the form of equivariance or conditional invariance are absent from the literature. This work initiates the study of nonparametric randomization tests for symmetry (invariance or equivariance) of a conditional distribution under the action of a specified locally compact group. We develop a general framework for randomization tests with finite-sample Type I error control and, using kernel methods, implement tests with finite-sample power lower bounds. We also describe and implement approximate versions of the tests, which are asymptotically consistent. We study their properties empirically on synthetic examples, and on applications to testing for symmetry in two problems from high-energy particle physics.
Related papers
- Permutation-Based Rank Test in the Presence of Discretization and Application in Causal Discovery with Mixed Data [16.892960387325743]
In psychometric studies, the continuous level of certain personality dimensions of a person can only be measured after discretization.
We propose Mixed data Permutation-based Rank Test (MPRT), which properly controls the statistical errors even when some variables are discretized.
MPRT can effectively control the Type I error in the presence of discretization while previous methods cannot.
arXiv Detail & Related papers (2025-01-31T09:47:26Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Non-parametric Hypothesis Tests for Distributional Group Symmetry [2.5782420501870296]
This work formulates non-parametric hypothesis tests for the presence or absence of general group symmetry.
We provide a general formulation of tests for symmetry that apply to two broad settings.
We apply them to testing for symmetry in geomagnetic satellite data and in two problems from high-energy particle physics.
arXiv Detail & Related papers (2023-07-28T22:51:28Z) - Bootstrapped Edge Count Tests for Nonparametric Two-Sample Inference
Under Heterogeneity [5.8010446129208155]
We develop a new nonparametric testing procedure that accurately detects differences between the two samples.
A comprehensive simulation study and an application to detecting user behaviors in online games demonstrates the excellent non-asymptotic performance of the proposed test.
arXiv Detail & Related papers (2023-04-26T22:25:44Z) - Sequential Permutation Testing of Random Forest Variable Importance
Measures [68.8204255655161]
It is proposed here to use sequential permutation tests and sequential p-value estimation to reduce the high computational costs associated with conventional permutation tests.
The results of simulation studies confirm that the theoretical properties of the sequential tests apply.
The numerical stability of the methods is investigated in two additional application studies.
arXiv Detail & Related papers (2022-06-02T20:16:50Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - On conditional versus marginal bias in multi-armed bandits [105.07190334523304]
The bias of the sample means of the arms in multi-armed bandits is an important issue in adaptive data analysis.
We characterize the sign of the conditional bias of monotone functions of the rewards, including the sample mean.
Our results hold for arbitrary conditioning events and leverage natural monotonicity properties of the data collection policy.
arXiv Detail & Related papers (2020-02-19T20:16:10Z) - Asymptotic Validity and Finite-Sample Properties of Approximate Randomization Tests [2.28438857884398]
Our key theoretical contribution is a non-asymptotic bound on the discrepancy between the size of an approximate randomization test and the size of the original randomization test using noiseless data.
We illustrate our theory through several examples, including tests of significance in linear regression.
arXiv Detail & Related papers (2019-08-12T16:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.