Color Enhancement for V-PCC Compressed Point Cloud via 2D Attribute Map Optimization
- URL: http://arxiv.org/abs/2412.14449v1
- Date: Thu, 19 Dec 2024 01:58:00 GMT
- Title: Color Enhancement for V-PCC Compressed Point Cloud via 2D Attribute Map Optimization
- Authors: Jingwei Bao, Yu Liu, Zeliang Li, Shuyuan Zhu, Siu-Kei Au Yeung,
- Abstract summary: Video-based point cloud compression (V-PCC) converts the dynamic point cloud data into video sequences.
This paper introduces a framework designed to enhance the color quality in the V-PCC compressed point clouds.
- Score: 8.21390074063036
- License:
- Abstract: Video-based point cloud compression (V-PCC) converts the dynamic point cloud data into video sequences using traditional video codecs for efficient encoding. However, this lossy compression scheme introduces artifacts that degrade the color attributes of the data. This paper introduces a framework designed to enhance the color quality in the V-PCC compressed point clouds. We propose the lightweight de-compression Unet (LDC-Unet), a 2D neural network, to optimize the projection maps generated during V-PCC encoding. The optimized 2D maps will then be back-projected to the 3D space to enhance the corresponding point cloud attributes. Additionally, we introduce a transfer learning strategy and develop a customized natural image dataset for the initial training. The model was then fine-tuned using the projection maps of the compressed point clouds. The whole strategy effectively addresses the scarcity of point cloud training data. Our experiments, conducted on the public 8i voxelized full bodies long sequences (8iVSLF) dataset, demonstrate the effectiveness of our proposed method in improving the color quality.
Related papers
- Implicit Neural Compression of Point Clouds [58.45774938982386]
NeRC$textbf3$ is a novel point cloud compression framework leveraging implicit neural representations to handle both geometry and attributes.
For dynamic point clouds, 4D-NeRC$textbf3$ demonstrates superior geometry compression compared to state-of-the-art G-PCC and V-PCC standards.
arXiv Detail & Related papers (2024-12-11T03:22:00Z) - Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - Att2CPC: Attention-Guided Lossy Attribute Compression of Point Clouds [18.244200436103156]
We propose an efficient attention-based method for lossy compression of point cloud attributes leveraging on an autoencoder architecture.
Experiments show that our method achieves an average improvement of 1.15 dB and 2.13 dB in BD-PSNR of Y channel and YUV channel, respectively.
arXiv Detail & Related papers (2024-10-23T12:32:21Z) - The JPEG Pleno Learning-based Point Cloud Coding Standard: Serving Man and Machine [49.16996486119006]
Deep learning has emerged as a powerful tool in point cloud coding.
JPEG has recently finalized the JPEG Pleno Learning-based Point Cloud Coding standard.
This paper provides a complete technical description of the JPEG PCC standard.
arXiv Detail & Related papers (2024-09-12T15:20:23Z) - P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
We tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr"odinger bridges to points clouds.
Experiments on object datasets show that P2P-Bridge achieves significant improvements over existing methods.
arXiv Detail & Related papers (2024-08-29T08:00:07Z) - 3D Point Cloud Compression with Recurrent Neural Network and Image
Compression Methods [0.0]
Storing and transmitting LiDAR point cloud data is essential for many AV applications.
Due to the sparsity and unordered structure of the data, it is difficult to compress point cloud data to a low volume.
We propose a new 3D-to-2D transformation which allows compression algorithms to efficiently exploit spatial correlations.
arXiv Detail & Related papers (2024-02-18T19:08:19Z) - GQE-Net: A Graph-based Quality Enhancement Network for Point Cloud Color
Attribute [51.4803148196217]
We propose a graph-based quality enhancement network (GQE-Net) to reduce color distortion in point clouds.
GQE-Net uses geometry information as an auxiliary input and graph convolution blocks to extract local features efficiently.
Experimental results show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-24T02:33:45Z) - EPCL: Frozen CLIP Transformer is An Efficient Point Cloud Encoder [60.52613206271329]
This paper introduces textbfEfficient textbfPoint textbfCloud textbfLearning (EPCL) for training high-quality point cloud models with a frozen CLIP transformer.
Our EPCL connects the 2D and 3D modalities by semantically aligning the image features and point cloud features without paired 2D-3D data.
arXiv Detail & Related papers (2022-12-08T06:27:11Z) - Efficient dynamic point cloud coding using Slice-Wise Segmentation [10.850101961203748]
MPEG recently developed a video-based point cloud compression (V-PCC) standard for dynamic point cloud coding.
Patch generations and self-occluded points in the 3D to the 2D projection are the main reasons for missing data using V-PCC.
This paper proposes a new method that introduces overlapping slicing to decrease the number of patches generated and the amount of data lost.
arXiv Detail & Related papers (2022-08-17T04:23:45Z) - Multiscale Point Cloud Geometry Compression [29.605320327889142]
We propose a multiscale-to-end learning framework which hierarchically reconstructs the 3D Point Cloud Geometry.
The framework is developed on top of a sparse convolution based autoencoder for point cloud compression and reconstruction.
arXiv Detail & Related papers (2020-11-07T16:11:16Z) - Folding-based compression of point cloud attributes [10.936043362876651]
We fold a 2D grid onto a point cloud and we map attributes from the point cloud onto the folded 2D grid using a novel optimized mapping method.
This mapping results in an image, which opens a way to apply existing image processing techniques on point cloud attributes.
In this work, we consider point cloud attribute compression; thus, we compress this image with a conventional 2D image.
arXiv Detail & Related papers (2020-02-11T14:55:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.