FedMUP: Federated Learning driven Malicious User Prediction Model for Secure Data Distribution in Cloud Environments
- URL: http://arxiv.org/abs/2412.14495v1
- Date: Thu, 19 Dec 2024 03:39:47 GMT
- Title: FedMUP: Federated Learning driven Malicious User Prediction Model for Secure Data Distribution in Cloud Environments
- Authors: Kishu Gupta, Deepika Saxena, Rishabh Gupta, Jatinder Kumar, Ashutosh Kumar Singh,
- Abstract summary: This article proposes a Federated learning driven Malicious User Prediction Model for Secure Data Distribution in Cloud Environments (FedMUP)
It analyses user behavior to acquire multiple security risk parameters. Afterward, it employs the federated learning-driven malicious user prediction approach to reveal doubtful users, proactively.
It is shown that significant improvement is observed in the key performance indicators such as malicious user prediction accuracy, precision, recall, and f1-score up to 14.32%, 17.88%, 14.32%, and 18.35%, respectively.
- Score: 5.132064656947053
- License:
- Abstract: Cloud computing is flourishing at a rapid pace. Significant consequences related to data security appear as a malicious user may get unauthorized access to sensitive data which may be misused, further. This raises an alarm-ringing situation to tackle the crucial issue related to data security and proactive malicious user prediction. This article proposes a Federated learning driven Malicious User Prediction Model for Secure Data Distribution in Cloud Environments (FedMUP). This approach firstly analyses user behavior to acquire multiple security risk parameters. Afterward, it employs the federated learning-driven malicious user prediction approach to reveal doubtful users, proactively. FedMUP trains the local model on their local dataset and transfers computed values rather than actual raw data to obtain an updated global model based on averaging various local versions. This updated model is shared repeatedly at regular intervals with the user for retraining to acquire a better, and more efficient model capable of predicting malicious users more precisely. Extensive experimental work and comparison of the proposed model with state-of-the-art approaches demonstrate the efficiency of the proposed work. Significant improvement is observed in the key performance indicators such as malicious user prediction accuracy, precision, recall, and f1-score up to 14.32%, 17.88%, 14.32%, and 18.35%, respectively.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning (FL) is a distributed machine learning diagram that enables multiple clients to collaboratively train a global model without sharing their private local data.
FL systems are vulnerable to attacks that are happening in malicious clients through data poisoning and model poisoning.
Existing defense methods typically focus on mitigating specific types of poisoning and are often ineffective against unseen types of attack.
arXiv Detail & Related papers (2024-08-05T20:27:45Z) - Defending Against Sophisticated Poisoning Attacks with RL-based Aggregation in Federated Learning [12.352511156767338]
Federated learning is highly susceptible to model poisoning attacks.
In this paper, we propose AdaAggRL, an RL-based Adaptive aggregation method.
Experiments on four real-world datasets demonstrate that the proposed defense model significantly outperforms widely adopted defense models for sophisticated attacks.
arXiv Detail & Related papers (2024-06-20T11:33:14Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
Federated Learning (FL) is a collaborative learning paradigm enabling participants to collectively train a shared machine learning model.
Current FL defense strategies against data poisoning attacks either involve a trade-off between accuracy and robustness.
We present FedZZ, which harnesses a zone-based deviating update (ZBDU) mechanism to effectively counter data poisoning attacks in FL.
arXiv Detail & Related papers (2024-04-05T14:37:49Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuard is a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks.
The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks.
arXiv Detail & Related papers (2024-03-05T17:41:35Z) - BayBFed: Bayesian Backdoor Defense for Federated Learning [17.433543798151746]
Federated learning (FL) allows participants to jointly train a machine learning model without sharing their private data with others.
BayBFed proposes to utilize probability distributions over client updates to detect malicious updates in FL.
arXiv Detail & Related papers (2023-01-23T16:01:30Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
Trajectory prediction using deep neural networks (DNNs) is an essential component of autonomous driving systems.
These methods are vulnerable to adversarial attacks, leading to serious consequences such as collisions.
In this work, we identify two key ingredients to defend trajectory prediction models against adversarial attacks.
arXiv Detail & Related papers (2022-07-29T22:35:05Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
Malicious clients can poison model updates and claim large quantities to amplify the impact of their model updates in the model aggregation.
Existing defense methods for FL, while all handling malicious model updates, either treat all quantities benign or simply ignore/truncate the quantities of all clients.
We propose a robust quantity-aware aggregation algorithm for federated learning, called FedRA, to perform the aggregation with awareness of local data quantities.
arXiv Detail & Related papers (2022-05-22T15:13:23Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.