FedCC: Robust Federated Learning against Model Poisoning Attacks
- URL: http://arxiv.org/abs/2212.01976v2
- Date: Wed, 5 Jun 2024 18:54:14 GMT
- Title: FedCC: Robust Federated Learning against Model Poisoning Attacks
- Authors: Hyejun Jeong, Hamin Son, Seohu Lee, Jayun Hyun, Tai-Myoung Chung,
- Abstract summary: Federated Learning is designed to address privacy concerns in learning models.
New distributed paradigm safeguards data privacy but differentiates the attack surface due to the server's inaccessibility to local datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning, designed to address privacy concerns in learning models, introduces a new distributed paradigm that safeguards data privacy but differentiates the attack surface due to the server's inaccessibility to local datasets and the change in protection objective--parameters' integrity. Existing approaches, including robust aggregation algorithms, fail to effectively filter out malicious clients, especially those with non-Independently and Identically Distributed data. Furthermore, these approaches often tackle non-IID data and poisoning attacks separately. To address both challenges simultaneously, we present FedCC, a simple yet novel algorithm. It leverages the Centered Kernel Alignment similarity of Penultimate Layer Representations for clustering, allowing it to identify and filter out malicious clients by selectively averaging chosen parameters, even in non-IID data settings. Our extensive experiments demonstrate the effectiveness of FedCC in mitigating untargeted model poisoning and backdoor attacks. FedCC reduces the attack confidence to a consistent zero compared to existing outlier detection-based and first-order statistics-based methods. Specifically, it significantly minimizes the average degradation of global performance by 65.5\%. We believe that this new perspective of assessing learning models makes it a valuable contribution to the field of FL model security and privacy. The code will be made available upon paper acceptance.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - BoBa: Boosting Backdoor Detection through Data Distribution Inference in Federated Learning [26.714674251814586]
Federated learning is susceptible to poisoning attacks due to its decentralized nature.
We propose a novel distribution-aware anomaly detection mechanism, BoBa, to address this problem.
arXiv Detail & Related papers (2024-07-12T19:38:42Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning (FL) is an emerging machine learning approach enabling model training on decentralized devices or data sources.
We propose a robust FL approach based on the credibility management scheme, called Fed-Credit.
The results exhibit superior accuracy and resilience against adversarial attacks, all while maintaining comparatively low computational complexity.
arXiv Detail & Related papers (2024-05-20T03:35:13Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
Federated Learning (FL) is a collaborative learning paradigm enabling participants to collectively train a shared machine learning model.
Current FL defense strategies against data poisoning attacks either involve a trade-off between accuracy and robustness.
We present FedZZ, which harnesses a zone-based deviating update (ZBDU) mechanism to effectively counter data poisoning attacks in FL.
arXiv Detail & Related papers (2024-04-05T14:37:49Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
Federated learning systems are susceptible to poisoning attacks when malicious clients send false updates to the central server.
This paper proposes a new defense strategy, FedCPA (Federated learning with Critical Analysis)
Our attack-tolerant aggregation method is based on the observation that benign local models have similar sets of top-k and bottom-k critical parameters, whereas poisoned local models do not.
arXiv Detail & Related papers (2023-08-18T05:37:55Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - A New Implementation of Federated Learning for Privacy and Security
Enhancement [27.612480082254486]
Federated learning (FL) has emerged as a new machine learning setting.
No local data needs to be shared, and privacy can be well protected.
We propose a model update based federated averaging algorithm to defend against Byzantine attacks.
arXiv Detail & Related papers (2022-08-03T03:13:19Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.