Do Large Language Models Advocate for Inferentialism?
- URL: http://arxiv.org/abs/2412.14501v2
- Date: Thu, 26 Jun 2025 11:03:13 GMT
- Title: Do Large Language Models Advocate for Inferentialism?
- Authors: Yuzuki Arai, Sho Tsugawa,
- Abstract summary: The emergence of large language models (LLMs) such as ChatGPT and Claude presents new challenges for philosophy of language.<n>This paper explores Robert Brandom's inferential semantics as an alternative foundational framework for understanding these systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of large language models (LLMs) such as ChatGPT and Claude presents new challenges for philosophy of language, particularly regarding the nature of linguistic meaning and representation. While LLMs have traditionally been understood through distributional semantics, this paper explores Robert Brandom's inferential semantics as an alternative foundational framework for understanding these systems. We examine how key features of inferential semantics -- including its anti-representationalist stance, logical expressivism, and quasi-compositional approach -- align with the architectural and functional characteristics of Transformer-based LLMs. Through analysis of the ISA (Inference, Substitution, Anaphora) approach, we demonstrate that LLMs exhibit fundamentally anti-representationalist properties in their processing of language. We further develop a consensus theory of truth appropriate for LLMs, grounded in their interactive and normative dimensions through mechanisms like RLHF. While acknowledging significant tensions between inferentialism's philosophical commitments and LLMs' sub-symbolic processing, this paper argues that inferential semantics provides valuable insights into how LLMs generate meaning without reference to external world representations. Our analysis suggests that LLMs may challenge traditional assumptions in philosophy of language, including strict compositionality and semantic externalism, though further empirical investigation is needed to fully substantiate these theoretical claims.
Related papers
- Not Minds, but Signs: Reframing LLMs through Semiotics [0.0]
This paper argues for a semiotic perspective on Large Language Models (LLMs)<n>Rather than assuming that LLMs understand language or simulate human thought, we propose that their primary function is to recombine, recontextualize, and circulate linguistic forms.<n>We explore applications in literature, philosophy, education, and cultural production.
arXiv Detail & Related papers (2025-05-20T08:49:18Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.<n>We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.<n>We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Human-like conceptual representations emerge from language prediction [72.5875173689788]
Large language models (LLMs) trained exclusively through next-token prediction over language data exhibit remarkably human-like behaviors.
Are these models developing concepts akin to humans, and if so, how are such concepts represented and organized?
Our results demonstrate that LLMs can flexibly derive concepts from linguistic descriptions in relation to contextual cues about other concepts.
These findings establish that structured, human-like conceptual representations can naturally emerge from language prediction without real-world grounding.
arXiv Detail & Related papers (2025-01-21T23:54:17Z) - Language Models as Semiotic Machines: Reconceptualizing AI Language Systems through Structuralist and Post-Structuralist Theories of Language [0.0]
This paper proposes a novel framework for understanding large language models (LLMs)
I argue that LLMs should be understood as models of language itself, aligning with Jacques's concept of 'writing' (l'ecriture)
I apply Saussure's critique of Saussure to position 'writing' as the object modeled by LLMs, offering a view of the machine's'mind' as a statistical approximation of sign behavior.
arXiv Detail & Related papers (2024-10-16T21:45:54Z) - Evaluating the Correctness of Inference Patterns Used by LLMs for Judgment [53.17596274334017]
We evaluate the correctness of the detailed inference patterns of an LLM behind its seemingly correct outputs.<n>Experiments show that even when the language generation results appear correct, a significant portion of the inference patterns used by the LLM for the legal judgment may represent misleading or irrelevant logic.
arXiv Detail & Related papers (2024-10-06T08:33:39Z) - Large Language Models as Markov Chains [7.078696932669912]
We draw an equivalence between autoregressive transformer-based language models and Markov chains defined on a finite state space.<n>We relate the obtained results to the pathological behavior observed with LLMs.<n> Experiments with the most recent Llama and Gemma herds of models show that our theory correctly captures their behavior in practice.
arXiv Detail & Related papers (2024-10-03T17:45:31Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - Linguistic Minimal Pairs Elicit Linguistic Similarity in Large Language Models [15.857451401890092]
We leverage linguistic minimal pairs to probe internal linguistic representations of Large Language Models (LLMs)
Our large-scale experiments, spanning 100+ LLMs and 150k minimal pairs in three languages, reveal properties of linguistic similarity from four key aspects.
arXiv Detail & Related papers (2024-09-19T03:29:40Z) - Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency [0.11510009152620666]
We argue that claims regarding linguistic capabilities of Large Language Models (LLMs) are based on at least two unfounded assumptions.
Language completeness assumes that a distinct and complete thing such as a natural language' exists.
The assumption of data completeness relies on the belief that a language can be quantified and wholly captured by data.
arXiv Detail & Related papers (2024-07-11T18:06:01Z) - Categorical Syllogisms Revisited: A Review of the Logical Reasoning Abilities of LLMs for Analyzing Categorical Syllogism [62.571419297164645]
This paper provides a systematic overview of prior works on the logical reasoning ability of large language models for analyzing categorical syllogisms.<n>We first investigate all the possible variations for the categorical syllogisms from a purely logical perspective.<n>We then examine the underlying configurations (i.e., mood and figure) tested by the existing datasets.
arXiv Detail & Related papers (2024-06-26T21:17:20Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - Fantastic Semantics and Where to Find Them: Investigating Which Layers of Generative LLMs Reflect Lexical Semantics [50.982315553104975]
We investigate the bottom-up evolution of lexical semantics for a popular large language model, namely Llama2.
Our experiments show that the representations in lower layers encode lexical semantics, while the higher layers, with weaker semantic induction, are responsible for prediction.
This is in contrast to models with discriminative objectives, such as mask language modeling, where the higher layers obtain better lexical semantics.
arXiv Detail & Related papers (2024-03-03T13:14:47Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
Large Language Models (LLMs) are versatile, yet they often falter in tasks requiring deep and reliable reasoning.
This paper introduces a rigorously designed framework for creating LLMs that effectively anchor knowledge and employ a closed-loop reasoning process.
arXiv Detail & Related papers (2023-11-18T18:10:02Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text.
This position paper critically assesses three points recurring in critiques of LLM capacities.
We outline a pragmatic perspective on the issue of real' understanding and intentionality in LLMs.
arXiv Detail & Related papers (2023-10-30T15:51:04Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Where New Words Are Born: Distributional Semantic Analysis of Neologisms
and Their Semantic Neighborhoods [51.34667808471513]
We investigate the importance of two factors, semantic sparsity and frequency growth rates of semantic neighbors, formalized in the distributional semantics paradigm.
We show that both factors are predictive word emergence although we find more support for the latter hypothesis.
arXiv Detail & Related papers (2020-01-21T19:09:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.