論文の概要: Relational Programming with Foundation Models
- arxiv url: http://arxiv.org/abs/2412.14515v1
- Date: Thu, 19 Dec 2024 04:26:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:30:20.119916
- Title: Relational Programming with Foundation Models
- Title(参考訳): 基礎モデルによる関係プログラミング
- Authors: Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Rajeev Alur, Mayur Naik,
- Abstract要約: 基礎モデルを用いたプログラミングのための宣言型フレームワークであるVieiraを提案する。
Vieiraは基礎モデルをリレーショナルインプットとアウトプットを備えたステートレス関数として扱う。
これは、そのようなモデルと論理プログラムをシームレスに組み合わせることによって、ニューロシンボリックな応用をサポートする。
- 参考スコア(独自算出の注目度): 11.853453554661058
- License:
- Abstract: Foundation models have vast potential to enable diverse AI applications. The powerful yet incomplete nature of these models has spurred a wide range of mechanisms to augment them with capabilities such as in-context learning, information retrieval, and code interpreting. We propose Vieira, a declarative framework that unifies these mechanisms in a general solution for programming with foundation models. Vieira follows a probabilistic relational paradigm and treats foundation models as stateless functions with relational inputs and outputs. It supports neuro-symbolic applications by enabling the seamless combination of such models with logic programs, as well as complex, multi-modal applications by streamlining the composition of diverse sub-models. We implement Vieira by extending the Scallop compiler with a foreign interface that supports foundation models as plugins. We implement plugins for 12 foundation models including GPT, CLIP, and SAM. We evaluate Vieira on 9 challenging tasks that span language, vision, and structured and vector databases. Our evaluation shows that programs in Vieira are concise, can incorporate modern foundation models, and have comparable or better accuracy than competitive baselines.
- Abstract(参考訳): ファンデーションモデルは、多様なAIアプリケーションを可能にする大きな可能性を秘めている。
これらのモデルの強力で不完全な性質は、コンテキスト内学習、情報検索、コード解釈といった機能でそれらを拡張するための幅広いメカニズムを刺激してきた。
基礎モデルを用いたプログラミングの一般的なソリューションとして,これらのメカニズムを統一する宣言的フレームワークであるVieiraを提案する。
Vieiraは確率的リレーショナルパラダイムに従い、基礎モデルをリレーショナルインプットとアウトプットを備えたステートレス関数として扱う。
これは、そのようなモデルと論理プログラムをシームレスに組み合わせることによって、ニューロシンボリックな応用をサポートし、また多様なサブモデルの構成を合理化することによって、複雑なマルチモーダルな応用を可能にする。
ファウンデーションモデルをプラグインとしてサポートする外部インターフェースでScallopコンパイラを拡張することで、Vieiraを実装します。
GPT、CLIP、SAMを含む12の基盤モデルのプラグインを実装しました。
言語、ビジョン、構造化およびベクトルデータベースにまたがる9つの課題について、Vieiraを評価する。
評価の結果, ビエイラのプログラムは簡潔で, 近代的な基礎モデルを組み込むことができ, 競争ベースラインに匹敵するか, 精度が高いことがわかった。
関連論文リスト
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
統合データモデル共同開発に適した新しいサンドボックススイートを提案する。
このサンドボックスは包括的な実験プラットフォームを提供し、データとモデルの両方の迅速なイテレーションと洞察駆動による改善を可能にする。
また、徹底的なベンチマークから得られた実りある洞察を明らかにし、データ品質、多様性、モデル行動の間の重要な相互作用に光を当てています。
論文 参考訳(メタデータ) (2024-07-16T14:40:07Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - SymbolicAI: A framework for logic-based approaches combining generative models and solvers [9.841285581456722]
生成過程における概念学習とフロー管理に論理的アプローチを取り入れた,汎用的でモジュール化されたフレームワークであるSybolicAIを紹介する。
我々は,大規模言語モデル(LLM)を,自然言語命令と形式言語命令の両方に基づいてタスクを実行する意味的解決器として扱う。
論文 参考訳(メタデータ) (2024-02-01T18:50:50Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffinフレームワークは、事前訓練された視覚言語モデルを使用して視覚信号のプロバイダとして機能する。
UniMM-Chatデータセットはデータセットの相補性を探求し、高品質で多様なマルチモーダル命令を生成する。
論文 参考訳(メタデータ) (2023-10-01T12:35:18Z) - TaCA: Upgrading Your Visual Foundation Model with Task-agnostic
Compatible Adapter [21.41170708560114]
視覚基盤モデルに基づくアプリケーションが増えている。
システムのアップグレードを伴う状況では、新しい基盤モデルに適応するために、下流モジュールを再訓練することが不可欠です。
パラメータ効率とタスク非依存のアダプタであるTaCAを導入し,異なる基礎モデル間の互換性を実現する。
論文 参考訳(メタデータ) (2023-06-22T03:00:24Z) - Language Model Cascades [72.18809575261498]
テスト時に1つのモデルで繰り返し対話する、あるいは複数のモデルの合成は、さらに機能を拡張する。
制御フローと動的構造を持つ場合、確率的プログラミングのテクニックが必要となる。
この観点から、スクラッチパッド/思考連鎖、検証器、STaR、選択推論、ツール利用など、いくつかの既存のテクニックを定式化します。
論文 参考訳(メタデータ) (2022-07-21T07:35:18Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
本稿では,様々な基礎モデルに対する汎用インタフェースとして言語モデルを提案する。
事前訓練されたエンコーダのコレクションは、様々なモダリティ(ビジョンや言語など)を知覚する
インタフェースとモジュールエンコーダを協調的に事前学習するための半因果言語モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-06-13T17:34:22Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
本稿では,MDD とABMS プラットフォームの利用状況と開発ミスについて比較する。
その結果、MDD4ABMSはNetLogoと類似した設計品質のシミュレーションを開発するのに、より少ない労力を必要とすることがわかった。
論文 参考訳(メタデータ) (2020-06-15T23:29:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。