論文の概要: Improving Geometry in Sparse-View 3DGS via Reprojection-based DoF Separation
- arxiv url: http://arxiv.org/abs/2412.14568v1
- Date: Thu, 19 Dec 2024 06:39:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:31:25.270341
- Title: Improving Geometry in Sparse-View 3DGS via Reprojection-based DoF Separation
- Title(参考訳): 投影型DoF分離によるスパースビュー3DGSの形状改善
- Authors: Yongsung Kim, Minjun Park, Jooyoung Choi, Sungroh Yoon,
- Abstract要約: 最近の学習型マルチビューステレオモデルでは、スパースビュー3次元再構成における最先端性能が実証されている。
本研究では,不確実性の観点から位置対応型DoFを識別する手法として,再プロジェクションに基づくDoF分離を提案する。
ガウシアンの位置のDoFを分離し、対象とする制約を適用することで、幾何学的アーティファクトを効果的に抑制できることが示される。
- 参考スコア(独自算出の注目度): 35.17953057142724
- License:
- Abstract: Recent learning-based Multi-View Stereo models have demonstrated state-of-the-art performance in sparse-view 3D reconstruction. However, directly applying 3D Gaussian Splatting (3DGS) as a refinement step following these models presents challenges. We hypothesize that the excessive positional degrees of freedom (DoFs) in Gaussians induce geometry distortion, fitting color patterns at the cost of structural fidelity. To address this, we propose reprojection-based DoF separation, a method distinguishing positional DoFs in terms of uncertainty: image-plane-parallel DoFs and ray-aligned DoF. To independently manage each DoF, we introduce a reprojection process along with tailored constraints for each DoF. Through experiments across various datasets, we confirm that separating the positional DoFs of Gaussians and applying targeted constraints effectively suppresses geometric artifacts, producing reconstruction results that are both visually and geometrically plausible.
- Abstract(参考訳): 最近の学習型マルチビューステレオモデルでは、スパースビュー3次元再構成における最先端性能が実証されている。
しかし、3Dガウススプラッティング(3DGS)を直接適用することで、これらのモデルが課題を呈する。
ガウシアンにおける過剰な位置自由度(DoF)は幾何歪みを誘発し、構造的忠実度を犠牲にして色パターンを適合させるという仮説を立てる。
そこで本稿では,画像平面並列型DoFとレイアライメント型DoFという不確実性の観点から位置対応型DoFを識別する手法である,再プロジェクションに基づくDoF分離を提案する。
各DoFを独立に管理するために、各DoFの制約に合わせて再計画プロセスを導入する。
様々なデータセットを対象とした実験により,ガウスのDoFを分離し,対象とする制約を適用することにより,幾何学的アーティファクトを効果的に抑制し,視覚的にも幾何学的にも再現可能な結果が得られることを確認した。
関連論文リスト
- FOF-X: Towards Real-time Detailed Human Reconstruction from a Single Image [68.84221452621674]
本稿では,1枚の画像から詳細な人物形状をリアルタイムに再現するFOF-Xを提案する。
FOF-Xはテクスチャや照明による性能劣化を避ける。
FOFとメッシュ表現間の変換アルゴリズムをラプラシアン制約とオートマトンベース不連続整合器で拡張する。
論文 参考訳(メタデータ) (2024-12-08T14:46:29Z) - GSurf: 3D Reconstruction via Signed Distance Fields with Direct Gaussian Supervision [3.2944910942497985]
マルチビュー画像からの表面再構成は3次元視覚における中核的な課題である。
近年, ニューラル・レージアンス・フィールド(NeRF)内のサイン付き距離場(SDF)を探索し, 高忠実な表面再構成を実現している。
本稿では,ガウス原始体から直接符号付き距離場を学習する新しいエンドツーエンド手法であるGSurfを紹介する。
GSurfは、VolSDFやNeuSといったニューラルな暗黙的表面法に匹敵する3D再構成品質を提供しながら、高速なトレーニングとレンダリングの速度を達成する。
論文 参考訳(メタデータ) (2024-11-24T05:55:19Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance Field [5.573454319150408]
四面体グリッド上での3次元形状特性を推定するために,明示的なSDFフィールドと浅いカラーネットワークを組み合わせた体積最適化フレームワークを提案する。
Chamfer統計による実験結果は、オブジェクト、オープンシーン、人間などの様々なシナリオにおいて、前例のない復元品質でこのアプローチを検証する。
論文 参考訳(メタデータ) (2024-07-29T09:46:39Z) - GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting [4.255847344539736]
我々はオクツリーに基づく暗黙的な表面表現とガウススプラッティングを組み合わせた新しいアプローチを導入する。
SDFによる3次元ガウス分布を利用した本手法は,特に高輝度光による特徴強調画像において,より正確な形状を再構成する。
論文 参考訳(メタデータ) (2024-06-26T09:29:56Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
微分可能放射場 eg NeRF を利用して、新しいビューレンダリングを生成するとともに、詳細な3次元表面を再構成する。
本研究では,SDFから放射場への射影を一様等間隔のアイコニカル正規化で定式化し,最適化することを考えると,光度重み付け係数を改良する。
提案する textitRaNeuS は,合成データと実データの両方で広く評価されている。
論文 参考訳(メタデータ) (2024-06-14T07:54:25Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - Gradient-SDF: A Semi-Implicit Surface Representation for 3D
Reconstruction [53.315347543761426]
Gradient-SDFは、暗黙的表現と明示的表現の利点を組み合わせた3次元幾何学の新しい表現である。
すべてのボクセルに符号付き距離場とその勾配ベクトル場を格納することにより、暗黙表現の能力を高める。
本研究では,(1)グラディエント・SDFは,ハッシュマップなどの効率的な記憶方式を用いて,深度画像からの直接SDF追跡を行うことができ,(2)グラディエント・SDF表現はボクセル表現で直接光度バンドル調整を行うことができることを示す。
論文 参考訳(メタデータ) (2021-11-26T18:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。