GSRender: Deduplicated Occupancy Prediction via Weakly Supervised 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2412.14579v1
- Date: Thu, 19 Dec 2024 06:57:37 GMT
- Title: GSRender: Deduplicated Occupancy Prediction via Weakly Supervised 3D Gaussian Splatting
- Authors: Qianpu Sun, Changyong Shu, Sifan Zhou, Zichen Yu, Yan Chen, Dawei Yang, Yuan Chun,
- Abstract summary: Previous weakly-supervised NeRF methods balance efficiency and accuracy, with mIoU varying by 5-10 points due to sampling count along camera rays.
We propose GSRender, which naturally employs 3D Gaussian splatting for occupancy prediction, simplifying the sampling process.
Our approach achieves SOTA results in RayIoU (+6.0), while narrowing the gap with 3D supervision methods.
- Score: 7.936178003928951
- License:
- Abstract: 3D occupancy perception is gaining increasing attention due to its capability to offer detailed and precise environment representations. Previous weakly-supervised NeRF methods balance efficiency and accuracy, with mIoU varying by 5-10 points due to sampling count along camera rays. Recently, real-time Gaussian splatting has gained widespread popularity in 3D reconstruction, and the occupancy prediction task can also be viewed as a reconstruction task. Consequently, we propose GSRender, which naturally employs 3D Gaussian Splatting for occupancy prediction, simplifying the sampling process. In addition, the limitations of 2D supervision result in duplicate predictions along the same camera ray. We implemented the Ray Compensation (RC) module, which mitigates this issue by compensating for features from adjacent frames. Finally, we redesigned the loss to eliminate the impact of dynamic objects from adjacent frames. Extensive experiments demonstrate that our approach achieves SOTA (state-of-the-art) results in RayIoU (+6.0), while narrowing the gap with 3D supervision methods. Our code will be released soon.
Related papers
- 3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting [15.124165321341646]
3D Gaussian Splatting (3DGS) has shown great potential for efficient reconstruction and high-fidelity real-time rendering on consumer hardware.
3DGS is constrained to ideal pinhole cameras and lacks support for secondary lighting effects.
Recent methods address these limitations by tracing particles instead.
We propose 3D Gaussian Unscented Transform (3DGUT), replacing the EWA splatting in 3DGS with the Unscented Transform.
arXiv Detail & Related papers (2024-12-17T03:21:25Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians [18.774112672831155]
3D-GS has shown remarkable rendering fidelity and efficiency compared to NeRF-based neural scene representations.
We introduce Octree-GS, featuring an LOD-structured 3D Gaussian approach supporting level-of-detail decomposition for scene representation.
arXiv Detail & Related papers (2024-03-26T17:39:36Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
We propose a novel approach to improve NeRF's performance with sparse inputs.
We first adopt a voxel-based ray sampling strategy to ensure that the sampled rays intersect with a certain voxel in 3D space.
We then randomly sample additional points within the voxel and apply a Transformer to infer the properties of other points on each ray, which are then incorporated into the volume rendering.
arXiv Detail & Related papers (2024-03-25T15:56:17Z) - pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction [26.72289913260324]
pixelSplat is a feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images.
Our model features real-time and memory-efficient rendering for scalable training as well as fast 3D reconstruction at inference time.
arXiv Detail & Related papers (2023-12-19T17:03:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.