GaussianOcc: Fully Self-supervised and Efficient 3D Occupancy Estimation with Gaussian Splatting
- URL: http://arxiv.org/abs/2408.11447v3
- Date: Thu, 12 Dec 2024 14:42:30 GMT
- Title: GaussianOcc: Fully Self-supervised and Efficient 3D Occupancy Estimation with Gaussian Splatting
- Authors: Wanshui Gan, Fang Liu, Hongbin Xu, Ningkai Mo, Naoto Yokoya,
- Abstract summary: We introduce a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views.
As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost.
- Score: 16.480043962212566
- License:
- Abstract: We introduce GaussianOcc, a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views. First, traditional methods for self-supervised 3D occupancy estimation still require ground truth 6D poses from sensors during training. To address this limitation, we propose Gaussian Splatting for Projection (GSP) module to provide accurate scale information for fully self-supervised training from adjacent view projection. Additionally, existing methods rely on volume rendering for final 3D voxel representation learning using 2D signals (depth maps, semantic maps), which is both time-consuming and less effective. We propose Gaussian Splatting from Voxel space (GSV) to leverage the fast rendering properties of Gaussian splatting. As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost (2.7 times faster in training and 5 times faster in rendering). The relevant code is available in https://github.com/GANWANSHUI/GaussianOcc.git.
Related papers
- GaussRender: Learning 3D Occupancy with Gaussian Rendering [84.60008381280286]
GaussRender is a plug-and-play 3D-to-2D reprojection loss that enhances voxel-based supervision.
Our method projects 3D voxel representations into arbitrary 2D perspectives and leverages Gaussian splatting as an efficient, differentiable rendering proxy of voxels.
arXiv Detail & Related papers (2025-02-07T16:07:51Z) - GaussianAD: Gaussian-Centric End-to-End Autonomous Driving [23.71316979650116]
Vision-based autonomous driving shows great potential due to its satisfactory performance and low costs.
Most existing methods adopt dense representations (e.g., bird's eye view) or sparse representations (e.g., instance boxes) for decision-making.
This paper explores a Gaussian-centric end-to-end autonomous driving framework and exploits 3D semantic Gaussians to extensively yet sparsely describe the scene.
arXiv Detail & Related papers (2024-12-13T18:59:30Z) - GaussianFormer-2: Probabilistic Gaussian Superposition for Efficient 3D Occupancy Prediction [55.60972844777044]
3D semantic occupancy prediction is an important task for robust vision-centric autonomous driving.
Most existing methods leverage dense grid-based scene representations, overlooking the spatial sparsity of the driving scenes.
We propose a probabilistic Gaussian superposition model which interprets each Gaussian as a probability distribution of its neighborhood being occupied.
arXiv Detail & Related papers (2024-12-05T17:59:58Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats [20.833116566243408]
In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics.
We introduce a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians.
Experimental results demonstrate that ours achieves a significantly faster rendering speed (x100) compared to state-of-the-art 3D consistent GANs.
arXiv Detail & Related papers (2024-06-05T05:52:20Z) - GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction [70.65250036489128]
3D semantic occupancy prediction aims to obtain 3D fine-grained geometry and semantics of the surrounding scene.
We propose an object-centric representation to describe 3D scenes with sparse 3D semantic Gaussians.
GaussianFormer achieves comparable performance with state-of-the-art methods with only 17.8% - 24.8% of their memory consumption.
arXiv Detail & Related papers (2024-05-27T17:59:51Z) - latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction [48.86083272054711]
latentSplat is a method to predict semantic Gaussians in a 3D latent space that can be splatted and decoded by a light-weight generative 2D architecture.
We show that latentSplat outperforms previous works in reconstruction quality and generalization, while being fast and scalable to high-resolution data.
arXiv Detail & Related papers (2024-03-24T20:48:36Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GS is a new rendering approach that outperforms the neural radiance field (NeRF) in terms of both speed and image quality.
We propose a computational reduction technique that quickly identifies unnecessary 3D Gaussians in real-time for rendering the current view.
For the Mip-NeRF360 dataset, the proposed technique excludes 63% of 3D Gaussians on average before the 2D image projection, which reduces the overall rendering by almost 38.3% without sacrificing peak-signal-to-noise-ratio (PSNR)
The proposed accelerator also achieves a speedup of 10.7x compared to a GPU
arXiv Detail & Related papers (2024-02-21T14:16:49Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.