Is This You, LLM? Recognizing AI-written Programs with Multilingual Code Stylometry
- URL: http://arxiv.org/abs/2412.14611v1
- Date: Thu, 19 Dec 2024 08:00:20 GMT
- Title: Is This You, LLM? Recognizing AI-written Programs with Multilingual Code Stylometry
- Authors: Andrea Gurioli, Maurizio Gabbrielli, Stefano Zacchiroli,
- Abstract summary: We introduce a technique for AI code stylometry, i.e., the ability to distinguish code generated by LLMs from code written by humans.
We also release H-AIRosettaMP, a novel open dataset for AI code stylometry tasks, consisting of 121 247 code snippets in 10 popular programming languages.
- Score: 3.6936359356095454
- License:
- Abstract: With the increasing popularity of LLM-based code completers, like GitHub Copilot, the interest in automatically detecting AI-generated code is also increasing-in particular in contexts where the use of LLMs to program is forbidden by policy due to security, intellectual property, or ethical concerns.We introduce a novel technique for AI code stylometry, i.e., the ability to distinguish code generated by LLMs from code written by humans, based on a transformer-based encoder classifier. Differently from previous work, our classifier is capable of detecting AI-written code across 10 different programming languages with a single machine learning model, maintaining high average accuracy across all languages (84.1% $\pm$ 3.8%).Together with the classifier we also release H-AIRosettaMP, a novel open dataset for AI code stylometry tasks, consisting of 121 247 code snippets in 10 popular programming languages, labeled as either human-written or AI-generated. The experimental pipeline (dataset, training code, resulting models) is the first fully reproducible one for the AI code stylometry task. Most notably our experiments rely only on open LLMs, rather than on proprietary/closed ones like ChatGPT.
Related papers
- An Empirical Study on Automatically Detecting AI-Generated Source Code: How Far Are We? [8.0988059417354]
We propose a range of approaches to improve the performance of AI-generated code detection.
Our best model outperforms state-of-the-art AI-generated code detector (GPTSniffer) and achieves an F1 score of 82.55.
arXiv Detail & Related papers (2024-11-06T22:48:18Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
We propose a novel zero-shot synthetic code detector based on the similarity between the original code and its LLM-rewritten variants.
Our results demonstrate a significant improvement over existing SOTA synthetic content detectors.
arXiv Detail & Related papers (2024-05-25T08:57:28Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.
CodeIP is a novel multi-bit watermarking technique that inserts additional information to preserve provenance details.
Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - Zero-Shot Code Representation Learning via Prompt Tuning [6.40875582886359]
We propose Zecoler, a zero-shot approach for learning code representations.
Zecoler is built upon a pre-trained programming language model.
We evaluate Zecoler in five code intelligence tasks including code clone detection, code search, method name prediction, code summarization, and code generation.
arXiv Detail & Related papers (2024-04-13T09:47:07Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBench is the first large-scale freeform question-answering (QA) benchmark for code to our knowledge.
It comprises 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages.
We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings.
arXiv Detail & Related papers (2024-03-11T02:06:30Z) - Assured LLM-Based Software Engineering [51.003878077888686]
This paper is an outline of the content of the keynote by Mark Harman at the International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering, Monday 15th April 2024, Lisbon, Portugal.
arXiv Detail & Related papers (2024-02-06T20:38:46Z) - Zero-Shot Detection of Machine-Generated Codes [83.0342513054389]
This work proposes a training-free approach for the detection of LLMs-generated codes.
We find that existing training-based or zero-shot text detectors are ineffective in detecting code.
Our method exhibits robustness against revision attacks and generalizes well to Java codes.
arXiv Detail & Related papers (2023-10-08T10:08:21Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z) - CGEMs: A Metric Model for Automatic Code Generation using GPT-3 [0.0]
This work aims to validate AI-generated content using theoretical proofs or by using Monte-Carlo simulation methods.
In this case, we use the latter approach to test/validate a statistically significant number of samples.
The various metrics that are garnered in this work to support the evaluation of generated code are as follows: Compilation, NL description to logic conversion, number of edits needed, some of the commonly used static-code metrics and NLP metrics.
arXiv Detail & Related papers (2021-08-23T13:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.