An Empirical Study on Automatically Detecting AI-Generated Source Code: How Far Are We?
- URL: http://arxiv.org/abs/2411.04299v1
- Date: Wed, 06 Nov 2024 22:48:18 GMT
- Title: An Empirical Study on Automatically Detecting AI-Generated Source Code: How Far Are We?
- Authors: Hyunjae Suh, Mahan Tafreshipour, Jiawei Li, Adithya Bhattiprolu, Iftekhar Ahmed,
- Abstract summary: We propose a range of approaches to improve the performance of AI-generated code detection.
Our best model outperforms state-of-the-art AI-generated code detector (GPTSniffer) and achieves an F1 score of 82.55.
- Score: 8.0988059417354
- License:
- Abstract: Artificial Intelligence (AI) techniques, especially Large Language Models (LLMs), have started gaining popularity among researchers and software developers for generating source code. However, LLMs have been shown to generate code with quality issues and also incurred copyright/licensing infringements. Therefore, detecting whether a piece of source code is written by humans or AI has become necessary. This study first presents an empirical analysis to investigate the effectiveness of the existing AI detection tools in detecting AI-generated code. The results show that they all perform poorly and lack sufficient generalizability to be practically deployed. Then, to improve the performance of AI-generated code detection, we propose a range of approaches, including fine-tuning the LLMs and machine learning-based classification with static code metrics or code embedding generated from Abstract Syntax Tree (AST). Our best model outperforms state-of-the-art AI-generated code detector (GPTSniffer) and achieves an F1 score of 82.55. We also conduct an ablation study on our best-performing model to investigate the impact of different source code features on its performance.
Related papers
- Intelligent Green Efficiency for Intrusion Detection [0.0]
This paper presents an assessment of different programming languages and Feature Selection (FS) methods to improve performance of AI.
Experiments were conducted using five ML models - Random Forest, XGBoost, LightGBM, Multi-Layer Perceptron, and Long Short-Term Memory.
Results demonstrated that FS plays an important role enhancing the computational efficiency of AI models without compromising detection accuracy.
arXiv Detail & Related papers (2024-11-11T15:01:55Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - SONAR: A Synthetic AI-Audio Detection Framework and Benchmark [59.09338266364506]
SONAR is a synthetic AI-Audio Detection Framework and Benchmark.
It aims to provide a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content.
It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based deepfake detection systems.
arXiv Detail & Related papers (2024-10-06T01:03:42Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
We propose a novel zero-shot synthetic code detector based on the similarity between the code and its rewritten variants.
Our results demonstrate a notable enhancement over existing synthetic content detectors designed for general texts.
arXiv Detail & Related papers (2024-05-25T08:57:28Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.
CodeIP is a novel multi-bit watermarking technique that embeds additional information to preserve provenance details.
Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - A Preliminary Study on Using Large Language Models in Software
Pentesting [2.0551676463612636]
Large language models (LLM) are perceived to offer promising potentials for automating security tasks.
We investigate the use of LLMs in software pentesting, where the main task is to automatically identify software security vulnerabilities in source code.
arXiv Detail & Related papers (2024-01-30T21:42:59Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Between Lines of Code: Unraveling the Distinct Patterns of Machine and Human Programmers [14.018844722021896]
We study the specific patterns that characterize machine- and human-authored code.
We propose DetectCodeGPT, a novel method for detecting machine-generated code.
arXiv Detail & Related papers (2024-01-12T09:15:20Z) - AI Content Self-Detection for Transformer-based Large Language Models [0.0]
This paper introduces the idea of direct origin detection and evaluates whether generative AI systems can recognize their output and distinguish it from human-written texts.
Google's Bard model exhibits the largest capability of self-detection with an accuracy of 94%, followed by OpenAI's ChatGPT with 83%.
arXiv Detail & Related papers (2023-12-28T10:08:57Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
We develop and experimentally validate the first fully self-reprogramming AI system.
Applying AI-based computer code generation to AI itself, we implement an algorithm with the ability to continuously modify and rewrite its own neural network source code.
arXiv Detail & Related papers (2022-04-30T05:44:34Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.