Unified Image Restoration and Enhancement: Degradation Calibrated Cycle Reconstruction Diffusion Model
- URL: http://arxiv.org/abs/2412.14630v1
- Date: Thu, 19 Dec 2024 08:33:33 GMT
- Title: Unified Image Restoration and Enhancement: Degradation Calibrated Cycle Reconstruction Diffusion Model
- Authors: Minglong Xue, Jinhong He, Shivakumara Palaiahnakote, Mingliang Zhou,
- Abstract summary: CycleRDM is a novel framework designed to unify restoration and enhancement tasks.
It learns the mapping relationships among the degraded domain, the rough normal domain, and the normal domain.
To improve restoration quality, we design a feature gain module for the decomposed wavelet high-frequency domain.
- Score: 8.713784455593778
- License:
- Abstract: Image restoration and enhancement are pivotal for numerous computer vision applications, yet unifying these tasks efficiently remains a significant challenge. Inspired by the iterative refinement capabilities of diffusion models, we propose CycleRDM, a novel framework designed to unify restoration and enhancement tasks while achieving high-quality mapping. Specifically, CycleRDM first learns the mapping relationships among the degraded domain, the rough normal domain, and the normal domain through a two-stage diffusion inference process. Subsequently, we transfer the final calibration process to the wavelet low-frequency domain using discrete wavelet transform, performing fine-grained calibration from a frequency domain perspective by leveraging task-specific frequency spaces. To improve restoration quality, we design a feature gain module for the decomposed wavelet high-frequency domain to eliminate redundant features. Additionally, we employ multimodal textual prompts and Fourier transform to drive stable denoising and reduce randomness during the inference process. After extensive validation, CycleRDM can be effectively generalized to a wide range of image restoration and enhancement tasks while requiring only a small number of training samples to be significantly superior on various benchmarks of reconstruction quality and perceptual quality. The source code will be available at https://github.com/hejh8/CycleRDM.
Related papers
- AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation [99.57024606542416]
We propose an adaptive all-in-one image restoration network based on frequency mining and modulation.
Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands.
The proposed model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations.
arXiv Detail & Related papers (2024-03-21T17:58:14Z) - HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved
Diffusion Models [38.74983301496911]
Hyperspectral image (HSI) restoration aims at recovering clean images from degraded observations.
Existing model-based methods have limitations in accurately modeling the complex image characteristics.
This paper proposes an unsupervised HSI restoration framework with pre-trained diffusion model (HIR-Diff)
arXiv Detail & Related papers (2024-02-24T17:15:05Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction [18.014481087171657]
The correction of exposure-related issues is a pivotal component in enhancing the quality of images.
This paper proposes a novel methodology that leverages the frequency domain to improve and unify the handling of exposure correction tasks.
Our proposed method achieves state-of-the-art results, paving the way for more sophisticated and unified solutions in exposure correction.
arXiv Detail & Related papers (2023-09-03T14:09:14Z) - Gated Multi-Resolution Transfer Network for Burst Restoration and
Enhancement [75.25451566988565]
We propose a novel Gated Multi-Resolution Transfer Network (GMTNet) to reconstruct a spatially precise high-quality image from a burst of low-quality raw images.
Detailed experimental analysis on five datasets validates our approach and sets a state-of-the-art for burst super-resolution, burst denoising, and low-light burst enhancement.
arXiv Detail & Related papers (2023-04-13T17:54:00Z) - Residual Multiplicative Filter Networks for Multiscale Reconstruction [24.962697695403037]
We introduce a new coordinate network architecture and training scheme that enables coarse-to-fine optimization with fine-grained control over the frequency support of learned reconstructions.
We demonstrate how these modifications enable multiscale optimization for coarse-to-fine fitting to natural images.
We then evaluate our model on synthetically generated datasets for the the problem of single-particle cryo-EM reconstruction.
arXiv Detail & Related papers (2022-06-01T20:16:28Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
Single image super-resolution(SISR) is an ill-posed problem that aims to obtain high-resolution (HR) output from low-resolution (LR) input.
Despite the high peak signal-to-noise ratios(PSNR) results, it is difficult to determine whether the model correctly adds desired high-frequency details.
We propose FreqNet, an intuitive pipeline from the frequency domain perspective, to solve this problem.
arXiv Detail & Related papers (2021-11-21T11:49:12Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
We show that it is possible to improve the performance of a recently introduced efficient generator architecture solely with the application of our proposed loss functions.
We show that our losses' direct emphasis on the frequencies in Fourier-space significantly boosts the perceptual image quality.
The trained generator achieves comparable results with and is 2.4x and 48x faster than state-of-the-art perceptual SR methods RankSRGAN and SRFlow respectively.
arXiv Detail & Related papers (2021-06-01T20:34:52Z) - Focal Frequency Loss for Image Reconstruction and Synthesis [125.7135706352493]
We show that narrowing gaps in the frequency domain can ameliorate image reconstruction and synthesis quality further.
We propose a novel focal frequency loss, which allows a model to adaptively focus on frequency components that are hard to synthesize.
arXiv Detail & Related papers (2020-12-23T17:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.