Wavelet-Driven Masked Image Modeling: A Path to Efficient Visual Representation
- URL: http://arxiv.org/abs/2503.00782v1
- Date: Sun, 02 Mar 2025 08:11:26 GMT
- Title: Wavelet-Driven Masked Image Modeling: A Path to Efficient Visual Representation
- Authors: Wenzhao Xiang, Chang Liu, Hongyang Yu, Xilin Chen,
- Abstract summary: Masked Image Modeling (MIM) has garnered significant attention in self-supervised learning, thanks to its impressive capacity to learn scalable visual representations tailored for downstream tasks.<n>However, images inherently contain abundant redundant information, leading the pixel-based MIM reconstruction process to focus excessively on finer details such as textures, thus prolonging training times unnecessarily.<n>In this study, we leverage wavelet transform as a tool for efficient representation learning to expedite the training process of MIM.
- Score: 27.576174611043367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Masked Image Modeling (MIM) has garnered significant attention in self-supervised learning, thanks to its impressive capacity to learn scalable visual representations tailored for downstream tasks. However, images inherently contain abundant redundant information, leading the pixel-based MIM reconstruction process to focus excessively on finer details such as textures, thus prolonging training times unnecessarily. Addressing this challenge requires a shift towards a compact representation of features during MIM reconstruction. Frequency domain analysis provides a promising avenue for achieving compact image feature representation. In contrast to the commonly used Fourier transform, wavelet transform not only offers frequency information but also preserves spatial characteristics and multi-level features of the image. Additionally, the multi-level decomposition process of wavelet transformation aligns well with the hierarchical architecture of modern neural networks. In this study, we leverage wavelet transform as a tool for efficient representation learning to expedite the training process of MIM. Specifically, we conduct multi-level decomposition of images using wavelet transform, utilizing wavelet coefficients from different levels to construct distinct reconstruction targets representing various frequencies and scales. These reconstruction targets are then integrated into the MIM process, with adjustable weights assigned to prioritize the most crucial information. Extensive experiments demonstrate that our method achieves comparable or superior performance across various downstream tasks while exhibiting higher training efficiency.
Related papers
- FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
We experimentally quantify the contrast sensitivity function of CNNs and compare it with that of the human visual system.<n>We propose the Wavelet-Guided Spectral Pooling Module (WSPM) to enhance and balance image features across the frequency domain.<n>To further emulate the human visual system, we introduce the Frequency Domain Enhanced Receptive Field Block (FE-RFB)<n>We develop FE-UNet, a model that utilizes SAM2 as its backbone and incorporates Hiera-Large as a pre-trained block.
arXiv Detail & Related papers (2025-02-06T07:24:34Z) - Multi-scale Frequency Enhancement Network for Blind Image Deblurring [7.198959621445282]
We propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring.
To capture the multi-scale spatial and channel information of blurred images, we introduce a multi-scale feature extraction module (MS-FE) based on depthwise separable convolutions.
We demonstrate that the proposed method achieves superior deblurring performance in both visual quality and objective evaluation metrics.
arXiv Detail & Related papers (2024-11-11T11:49:18Z) - Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
We propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration.
Our proposed method achieves new state-of-the-art performance while maintaining low computational complexity.
arXiv Detail & Related papers (2024-08-19T16:42:58Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Scaling Efficient Masked Image Modeling on Large Remote Sensing Dataset [66.15872913664407]
We present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach.<n>We curated a high-quality dataset named OpticalRS-13M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication.<n>Experiments demonstrate that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2 times.
arXiv Detail & Related papers (2024-06-17T15:41:57Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Low-light Image Enhancement via CLIP-Fourier Guided Wavelet Diffusion [28.049668999586583]
We propose a novel and robust low-light image enhancement method via CLIP-Fourier Guided Wavelet Diffusion, abbreviated as CFWD.
CFWD leverages multimodal visual-language information in the frequency domain space created by multiple wavelet transforms to guide the enhancement process.
Our approach outperforms existing state-of-the-art methods, achieving significant progress in image quality and noise suppression.
arXiv Detail & Related papers (2024-01-08T10:08:48Z) - Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring [25.36888929483233]
We propose a multi-scale network based on single-input and multiple-outputs(SIMO) for motion deblurring.
We combine the characteristics of real-world trajectories with a learnable wavelet transform module to focus on the directional continuity and frequency features of the step-by-step transitions between blurred images to sharp images.
arXiv Detail & Related papers (2023-12-29T02:59:40Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones.
Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model.
We propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis.
arXiv Detail & Related papers (2022-12-02T11:40:40Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - MAT: Mask-Aware Transformer for Large Hole Image Inpainting [79.67039090195527]
We present a novel model for large hole inpainting, which unifies the merits of transformers and convolutions.
Experiments demonstrate the state-of-the-art performance of the new model on multiple benchmark datasets.
arXiv Detail & Related papers (2022-03-29T06:36:17Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
We show that neural network layers that explicitly combine frequency and image feature representations can be used as a versatile building block for reconstruction from frequency space data.
The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network.
arXiv Detail & Related papers (2020-07-02T23:54:46Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.