Adaptive Prompt Tuning: Vision Guided Prompt Tuning with Cross-Attention for Fine-Grained Few-Shot Learning
- URL: http://arxiv.org/abs/2412.14640v2
- Date: Wed, 01 Jan 2025 18:00:00 GMT
- Title: Adaptive Prompt Tuning: Vision Guided Prompt Tuning with Cross-Attention for Fine-Grained Few-Shot Learning
- Authors: Eric Brouwer, Jan Erik van Woerden, Gertjan Burghouts, Matias Valdenegro-Toro, Marco Zullich,
- Abstract summary: Few-shot, fine-grained classification in computer vision poses significant challenges due to the need to differentiate subtle class distinctions with limited data.
This paper presents a novel method that enhances the Contrastive Language-Image Pre-Training model through adaptive prompt tuning.
- Score: 5.242869847419834
- License:
- Abstract: Few-shot, fine-grained classification in computer vision poses significant challenges due to the need to differentiate subtle class distinctions with limited data. This paper presents a novel method that enhances the Contrastive Language-Image Pre-Training (CLIP) model through adaptive prompt tuning, guided by real-time visual inputs. Unlike existing techniques such as Context Optimization (CoOp) and Visual Prompt Tuning (VPT), which are constrained by static prompts or visual token reliance, the proposed approach leverages a cross-attention mechanism to dynamically refine text prompts for the image at hand. This enables an image-specific alignment of textual features with image patches extracted from the Vision Transformer, making the model more effective for datasets with high intra-class variance and low inter-class differences. The method is evaluated on several datasets, including CUBirds, Oxford Flowers, and FGVC Aircraft, showing significant performance gains over static prompt tuning approaches. To ensure these performance gains translate into trustworthy predictions, we integrate Monte-Carlo Dropout in our approach to improve the reliability of the model predictions and uncertainty estimates. This integration provides valuable insights into the model's predictive confidence, helping to identify when predictions can be trusted and when additional verification is necessary. This dynamic approach offers a robust solution, advancing the state-of-the-art for few-shot fine-grained classification.
Related papers
- Noise is an Efficient Learner for Zero-Shot Vision-Language Models [9.519280130389935]
Test-Time Noise Tuning is a novel method for handling unpredictable shifts in the visual space.
We introduce a novel approach for inter-view representation alignment by explicitly enforcing coherence in embedding.
These improvements lay a strong foundation for adaptive out-of-distribution handling.
arXiv Detail & Related papers (2025-02-09T20:25:42Z) - Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment [57.0121616203175]
We propose FiSAO, a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment.
By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data.
arXiv Detail & Related papers (2024-10-18T03:34:32Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
Large Vision-Language Models (LVLMs) have made substantial progress by integrating pre-trained large language models (LLMs) and vision models through instruction tuning.
LVLMs often exhibit the hallucination phenomenon, where generated text responses appear linguistically plausible but contradict the input image.
We propose the Calibrated Self-Rewarding (CSR) approach, which enables the model to self-improve by iteratively generating candidate responses, evaluating the reward for each response, and curating preference data for fine-tuning.
arXiv Detail & Related papers (2024-05-23T14:30:33Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - VeCAF: Vision-language Collaborative Active Finetuning with Training Objective Awareness [56.87603097348203]
VeCAF uses labels and natural language annotations to perform parametric data selection for PVM finetuning.
VeCAF incorporates the finetuning objective to select significant data points that effectively guide the PVM towards faster convergence.
On ImageNet, VeCAF uses up to 3.3x less training batches to reach the target performance compared to full finetuning.
arXiv Detail & Related papers (2024-01-15T17:28:37Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - SVL-Adapter: Self-Supervised Adapter for Vision-Language Pretrained
Models [9.017387427570538]
Vision-language models such as CLIP are pretrained on large volumes of internet sourced image and text pairs.
Due to their size, fine-tuning these models on new datasets can be prohibitively expensive, both in terms of the supervision and compute required.
We present a new approach called SVL-Adapter that combines the complementary strengths of both vision-language pretraining and self-supervised representation learning.
arXiv Detail & Related papers (2022-10-07T19:35:08Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) has been developed to learn image descriptions from unaligned vision-language sample pairs.
Recent successes of Vision-Language Pre-Trained Models (VL-PTMs) have triggered the development of prompt-based learning.
We present in this paper a novel scheme based on prompt to train the UIC model, making best use of the powerful generalization ability.
arXiv Detail & Related papers (2022-05-26T03:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.