Noise is an Efficient Learner for Zero-Shot Vision-Language Models
- URL: http://arxiv.org/abs/2502.06019v1
- Date: Sun, 09 Feb 2025 20:25:42 GMT
- Title: Noise is an Efficient Learner for Zero-Shot Vision-Language Models
- Authors: Raza Imam, Asif Hanif, Jian Zhang, Khaled Waleed Dawoud, Yova Kementchedjhieva, Mohammad Yaqub,
- Abstract summary: Test-Time Noise Tuning is a novel method for handling unpredictable shifts in the visual space.
We introduce a novel approach for inter-view representation alignment by explicitly enforcing coherence in embedding.
These improvements lay a strong foundation for adaptive out-of-distribution handling.
- Score: 9.519280130389935
- License:
- Abstract: Recently, test-time adaptation has garnered attention as a method for tuning models without labeled data. The conventional modus operandi for adapting pre-trained vision-language models (VLMs) during test-time primarily focuses on tuning learnable prompts; however, this approach overlooks potential distribution shifts in the visual representations themselves. In this work, we address this limitation by introducing Test-Time Noise Tuning (TNT), a novel method for handling unpredictable shifts in the visual space. TNT leverages, for the first time, a noise adaptation strategy that optimizes learnable noise directly in the visual input space, enabling adaptive feature learning from a single test sample. We further introduce a novel approach for inter-view representation alignment by explicitly enforcing coherence in embedding distances, ensuring consistent feature representations across views. Combined with scaled logits and confident view selection at inference, TNT substantially enhances VLM generalization and calibration, achieving average gains of +7.38% on natural distributions benchmark and +0.80% on cross-dataset evaluations over zero-shot CLIP. These improvements lay a strong foundation for adaptive out-of-distribution handling.
Related papers
- Adaptive Prompt Tuning: Vision Guided Prompt Tuning with Cross-Attention for Fine-Grained Few-Shot Learning [5.242869847419834]
Few-shot, fine-grained classification in computer vision poses significant challenges due to the need to differentiate subtle class distinctions with limited data.
This paper presents a novel method that enhances the Contrastive Language-Image Pre-Training model through adaptive prompt tuning.
arXiv Detail & Related papers (2024-12-19T08:51:01Z) - Visual Fourier Prompt Tuning [63.66866445034855]
We propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models.
Our approach incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information.
Our results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2024-11-02T18:18:35Z) - BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
We propose a novel backpropagation-free algorithm BaFTA for test-time adaptation of vision-language models.
BaFTA directly estimates class centroids using online clustering within a projected embedding space.
We demonstrate that BaFTA consistently outperforms state-of-the-art test-time adaptation methods in both effectiveness and efficiency.
arXiv Detail & Related papers (2024-06-17T08:16:24Z) - Just Shift It: Test-Time Prototype Shifting for Zero-Shot Generalization with Vision-Language Models [19.683461002518147]
Test-Time Prototype Shifting (TPS) is a pioneering approach designed to adapt vision-language models to test datasets using unlabeled test inputs.
TPS not only facilitates optimization-free prototype reuse for subsequent predictions but also enables seamless integration with current advancements in prompt engineering.
A notable aspect of our framework is its significantly reduced memory and computational demands when compared to conventional text-prompt tuning methods.
arXiv Detail & Related papers (2024-03-19T17:54:34Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
We propose a novel method to realize seamless adaptation of pre-trained models for visual place recognition (VPR)
Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method.
Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time.
arXiv Detail & Related papers (2024-02-22T12:55:01Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
We propose test-time prompt tuning (TPT) to learn adaptive prompts on the fly with a single test sample.
TPT improves the zero-shot top-1 accuracy of CLIP by 3.6% on average.
In evaluating cross-dataset generalization with unseen categories, TPT performs on par with the state-of-the-art approaches that use additional training data.
arXiv Detail & Related papers (2022-09-15T17:55:11Z) - CPT: Colorful Prompt Tuning for Pre-trained Vision-Language Models [101.5066760592534]
We present Cross-modal Prompt Tuning (CPT), a novel paradigm for tuning Vision-Language Models (VL-PTMs)
CPT reformulates visual grounding into a fill-in-the-blank problem with color-based co-referential markers in image and text, maximally mitigating the gap.
Comprehensive experimental results show that prompt tuned VL-PTMs outperform their fine-tuned counterparts by a large margin.
arXiv Detail & Related papers (2021-09-24T08:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.