論文の概要: How to Synthesize Text Data without Model Collapse?
- arxiv url: http://arxiv.org/abs/2412.14689v1
- Date: Thu, 19 Dec 2024 09:43:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:53.593387
- Title: How to Synthesize Text Data without Model Collapse?
- Title(参考訳): モデル崩壊のないテキストデータの合成法
- Authors: Xuekai Zhu, Daixuan Cheng, Hengli Li, Kaiyan Zhang, Ermo Hua, Xingtai Lv, Ning Ding, Zhouhan Lin, Zilong Zheng, Bowen Zhou,
- Abstract要約: 合成データのモデル崩壊は、自己生成データに対する反復的なトレーニングが徐々に性能を低下させることを示している。
半合成データを得るために,人為的データに対するトークン編集を提案する。
- 参考スコア(独自算出の注目度): 37.219627817995054
- License:
- Abstract: Model collapse in synthetic data indicates that iterative training on self-generated data leads to a gradual decline in performance. With the proliferation of AI models, synthetic data will fundamentally reshape the web data ecosystem. Future GPT-$\{n\}$ models will inevitably be trained on a blend of synthetic and human-produced data. In this paper, we focus on two questions: what is the impact of synthetic data on language model training, and how to synthesize data without model collapse? We first pre-train language models across different proportions of synthetic data, revealing a negative correlation between the proportion of synthetic data and model performance. We further conduct statistical analysis on synthetic data to uncover distributional shift phenomenon and over-concentration of n-gram features. Inspired by the above findings, we propose token editing on human-produced data to obtain semi-synthetic data. As a proof of concept, we theoretically demonstrate that token-level editing can prevent model collapse, as the test error is constrained by a finite upper bound. We conduct extensive experiments on pre-training from scratch, continual pre-training, and supervised fine-tuning. The results validate our theoretical proof that token-level editing improves data quality and enhances model performance.
- Abstract(参考訳): 合成データのモデル崩壊は、自己生成データに対する反復的なトレーニングが徐々に性能を低下させることを示している。
AIモデルの普及により、合成データはWebデータエコシステムを根本的に再構築する。
将来のGPT-$\{n\}$モデルは、必然的に人工データと人為データの混合に基づいて訓練される。
本稿では、合成データが言語モデルトレーニングに与える影響と、モデル崩壊のないデータ合成方法の2つに焦点をあてる。
まず,合成データの比率が異なる言語モデルを用いて,合成データの比率とモデル性能との負の相関関係を明らかにする。
さらに,n-gram特徴量の分布シフト現象と過剰集中を明らかにするために,合成データの統計的解析を行う。
以上の知見に触発されて,半合成データを得るために,人為的データを用いたトークン編集を提案する。
概念実証として,テストエラーが有限上限で制約されているため,トークンレベルの編集がモデル崩壊を防止できることを理論的に証明する。
我々は、スクラッチからの事前トレーニング、連続的な事前トレーニング、および教師付き微調整について広範な実験を行った。
その結果,トークンレベルの編集によりデータ品質が向上し,モデル性能が向上するという理論的証明が得られた。
関連論文リスト
- Maximizing the Potential of Synthetic Data: Insights from Random Matrix Theory [8.713796223707398]
実データと合成データを混合して学習したバイナリ分類器の性能を,ランダム行列理論を用いて導出する。
本研究は, 生成モデルの品質と検証戦略に焦点をあてて, 合成データにより性能が向上する条件を明らかにした。
論文 参考訳(メタデータ) (2024-10-11T16:09:27Z) - Self-Improving Diffusion Models with Synthetic Data [12.597035060380001]
シンセティックデータを用いた自己IM拡散モデル(SIMS)は、拡散モデルのための新しい訓練概念である。
SIMSは自己合成データを使用して生成プロセス中に負のガイダンスを提供する。
MADを使わずに、自己生成合成データに対して反復的に訓練できる、最初の予防的生成AIアルゴリズムである。
論文 参考訳(メタデータ) (2024-08-29T08:12:18Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
本研究では,データキュレーションが生成モデルの反復的再学習に与える影響について検討する。
報奨モデルに従ってデータをキュレートすると、反復的再訓練手順の期待報酬が最大になることを示す。
論文 参考訳(メタデータ) (2024-06-12T21:28:28Z) - How Bad is Training on Synthetic Data? A Statistical Analysis of Language Model Collapse [9.59833542807268]
モデル崩壊は、以前に訓練されたモデルから生成された合成データに基づいて新しいモデルが訓練されたときに起こる。
合成データのみを用いたトレーニングでは,モデル崩壊は回避できないことを示す。
モデル崩壊を回避できる合成データの最大量を推定する。
論文 参考訳(メタデータ) (2024-04-07T22:15:13Z) - Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data [49.73114504515852]
各世代の合成データによって元の実データを置き換えることは、モデル崩壊の傾向にあることを示す。
生成した実データと連続する合成データの蓄積は,モデル崩壊を回避することを実証する。
論文 参考訳(メタデータ) (2024-04-01T18:31:24Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
※データ合成*はラベル付きデータの少ない小さなモデルをトレーニングするための有望な方法です。
本稿では,この分散ギャップを縮めるデータ合成フレームワークであるStep* (**S3**) による合成ステップを提案する。
提案手法は,合成データセットと実データとのギャップを小さくすることで,小型モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-10-20T17:14:25Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Synthetic Alone: Exploring the Dark Side of Synthetic Data for
Grammatical Error Correction [5.586798679167892]
データ中心のAIアプローチは、モデルを変更することなく、モデルのパフォーマンスを向上させることを目的としている。
データ品質管理手法は、実世界のデータで訓練されたモデルに肯定的な影響を与える。
合成データのみに基づいて訓練されたモデルでは、負の影響が観測される。
論文 参考訳(メタデータ) (2023-06-26T01:40:28Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。