Quantum chaos, localization and phase transitions in random graphs
- URL: http://arxiv.org/abs/2412.14722v1
- Date: Thu, 19 Dec 2024 10:44:53 GMT
- Title: Quantum chaos, localization and phase transitions in random graphs
- Authors: Ioannis Kleftogiannis, Ilias Amanatidis,
- Abstract summary: The random geometry of random graphs leads to various quantum chaotic and localized phases and transitions between them.
Our analysis shows that physical systems with random geometry, for example ones with a fluctuating/dynamical spatial dimension, contain novel universal phase transition properties.
- Score: 0.0
- License:
- Abstract: The energy level statistics of uniform random graphs are studied, by treating the graphs as random tight-binding lattices. The inherent random geometry of the graphs and their dynamical spatial dimensionality, leads to various quantum chaotic and localized phases and transitions between them. Essentially the random geometry acts as disorder, whose strength is characterized by the ratio of edges over vertices R in the graphs. For dense graphs, with large ratio R, the spacing between successive energy levels follows the Wigner-Dyson distribution, leading to a quantum chaotic behavior and a metallic phase, characterized by level repulsion. For ratios near R=0.5, where a large dominating component in the graph appears, the level spacing follows the Poisson distribution with level crossings and a localized phase for the respective wavefunctions lying on the graph. For intermediate ratios R we observe a phase transition between the quantum chaotic and localized phases characterized by a semi-Poisson distribution. The values R of the critical regime where the phase transition occurs depend on the energy of the system. Our analysis shows that physical systems with random geometry, for example ones with a fluctuating/dynamical spatial dimension, contain novel universal phase transition properties, similar to those occuring in more traditional phase transitions based on symmetry breaking mechanisms, whose universal properties are strongly determined by the dimensionality of the system.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Entanglement Transitions from Stochastic Resetting of Non-Hermitian
Quasiparticles [0.0]
We write down a renewal equation for the statistics of the entanglement entropy and show that depending on the spectrum of quasiparticle decay rates different entanglement scaling can arise and even sharp entanglement phase transitions.
When applied to a Quantum Ising chain where the transverse magnetization is measured by quantum jumps, our theory predicts a critical phase with logarithmic scaling of the entanglement, an area law phase and a continuous phase transition between them, with an effective central charge vanishing as a square root at the transition point.
arXiv Detail & Related papers (2021-11-05T13:38:04Z) - Localization transition induced by programmable disorder [0.24629531282150877]
Many-body localization occurs on a spin-1/2 transverse-field Ising model.
We observe a transition from an ergodic phase to a non-thermal phase for individual energy eigenstates.
We realize the time-independent disordered Ising Hamiltonian experimentally on a D-Wave 2000Q programmable quantum annealer.
arXiv Detail & Related papers (2021-08-15T15:37:32Z) - Measurement-induced dark state phase transitions in long-ranged fermion
systems [3.093890460224435]
We identify an unconventional scaling phase in the quantum dynamics of free fermions with long range hopping.
A perturbative renormalization group analysis suggests that the transitions to the long-range phase are also unconventional, corresponding to a modified sine-Gordon theory.
This confirms the view of a measurement-induced phase transition as a quantum phase transition in the dark state of an effective, non-Hermitian Hamiltonian.
arXiv Detail & Related papers (2021-05-17T18:00:03Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Nonequilibrium phases and phase transitions of the XY-model [0.9290757451344674]
We characterize the different non-equilibrium phases as functions of the chain's parameters and magnetic potentials.
Results should prove helpful in establishing the properties of non-equilibrium phases and phase transitions of extended open quantum systems.
arXiv Detail & Related papers (2020-09-15T02:58:50Z) - Area-Law Study of Quantum Spin System on Hyperbolic Lattice Geometries [0.0]
Magnetic properties of the transverse-field Ising model on curved (hyperbolic) lattices are studied.
We identify the quantum phase transition for each hyperbolic lattice by calculating the magnetization.
We study the entanglement entropy at the phase transition in order to analyze the correlations of various subsystems.
arXiv Detail & Related papers (2020-03-24T08:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.