Beyond the Hype: A Comprehensive Review of Current Trends in Generative AI Research, Teaching Practices, and Tools
- URL: http://arxiv.org/abs/2412.14732v1
- Date: Thu, 19 Dec 2024 11:01:11 GMT
- Title: Beyond the Hype: A Comprehensive Review of Current Trends in Generative AI Research, Teaching Practices, and Tools
- Authors: James Prather, Juho Leinonen, Natalie Kiesler, Jamie Gorson Benario, Sam Lau, Stephen MacNeil, Narges Norouzi, Simone Opel, Vee Pettit, Leo Porter, Brent N. Reeves, Jaromir Savelka, David H. Smith IV, Sven Strickroth, Daniel Zingaro,
- Abstract summary: In 2024, new research started to emerge on the effects of GenAI usage in the computing classroom.
New data involve the use of GenAI to support classroom instruction at scale and to teach students how to code with GenAI.
New class of tools is emerging that can provide personalized feedback to students on their programming assignments or teach both programming and prompting skills at the same time.
- Score: 4.352985782794601
- License:
- Abstract: Generative AI (GenAI) is advancing rapidly, and the literature in computing education is expanding almost as quickly. Initial responses to GenAI tools were mixed between panic and utopian optimism. Many were fast to point out the opportunities and challenges of GenAI. Researchers reported that these new tools are capable of solving most introductory programming tasks and are causing disruptions throughout the curriculum. These tools can write and explain code, enhance error messages, create resources for instructors, and even provide feedback and help for students like a traditional teaching assistant. In 2024, new research started to emerge on the effects of GenAI usage in the computing classroom. These new data involve the use of GenAI to support classroom instruction at scale and to teach students how to code with GenAI. In support of the former, a new class of tools is emerging that can provide personalized feedback to students on their programming assignments or teach both programming and prompting skills at the same time. With the literature expanding so rapidly, this report aims to summarize and explain what is happening on the ground in computing classrooms. We provide a systematic literature review; a survey of educators and industry professionals; and interviews with educators using GenAI in their courses, educators studying GenAI, and researchers who create GenAI tools to support computing education. The triangulation of these methods and data sources expands the understanding of GenAI usage and perceptions at this critical moment for our community.
Related papers
- Lessons for GenAI Literacy From a Field Study of Human-GenAI Augmentation in the Workplace [0.11704154007740832]
This study compares the use of GenAI across three different functions - product development, software engineering, and digital content creation.
Findings show a wide variance in the use of GenAI and in the level of computing knowledge of users.
arXiv Detail & Related papers (2025-02-01T21:26:31Z) - From Automation to Cognition: Redefining the Roles of Educators and Generative AI in Computing Education [2.0628700367476203]
Generative Artificial Intelligence (GenAI) offers opportunities to revolutionise teaching and learning in Computing Education (CE)
However, educators have expressed concerns that students may over-rely on GenAI and use these tools to generate solutions without engaging in the learning process.
This paper describes our experiences with using GenAI in CS-focused educational settings and the changes we have implemented accordingly in our teaching.
arXiv Detail & Related papers (2024-12-16T03:36:25Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
There is limited prior research on computing students' use and perceptions of GenAI.
We surveyed all computer science majors in a small engineering-focused R1 university.
We discuss the impact of our findings on the emerging conversation around GenAI and education.
arXiv Detail & Related papers (2024-11-17T20:17:47Z) - Analysis of Generative AI Policies in Computing Course Syllabi [3.7869332128069773]
Since the release of ChatGPT in 2022, Generative AI (GenAI) is increasingly being used in higher education computing classrooms across the U.S.
We collected 98 computing course syllabi from 54 R1 institutions in the U.S. and studied the GenAI policies they adopted and the surrounding discourse.
Our analysis shows that 1) most instructions related to GenAI use were as part of the academic integrity policy for the course and 2) most syllabi prohibited or restricted GenAI use, often warning students about the broader implications of using GenAI.
arXiv Detail & Related papers (2024-10-29T17:34:10Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Genetic Auto-prompt Learning for Pre-trained Code Intelligence Language Models [54.58108387797138]
We investigate the effectiveness of prompt learning in code intelligence tasks.
Existing automatic prompt design methods are very limited to code intelligence tasks.
We propose Genetic Auto Prompt (GenAP) which utilizes an elaborate genetic algorithm to automatically design prompts.
arXiv Detail & Related papers (2024-03-20T13:37:00Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
We introduce "AI-Lab," a framework for guiding students in effectively leveraging GenAI within core programming courses.
By identifying and rectifying GenAI's errors, students enrich their learning process.
For educators, AI-Lab provides mechanisms to explore students' perceptions of GenAI's role in their learning experience.
arXiv Detail & Related papers (2023-08-23T17:20:37Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Text systems generate textual output based on structured data utilizing machine learning.
GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text.
arXiv Detail & Related papers (2021-10-19T18:07:07Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - GENIE: A Leaderboard for Human-in-the-Loop Evaluation of Text Generation [83.10599735938618]
Leaderboards have eased model development for many NLP datasets by standardizing their evaluation and delegating it to an independent external repository.
This work introduces GENIE, an human evaluation leaderboard, which brings the ease of leaderboards to text generation tasks.
arXiv Detail & Related papers (2021-01-17T00:40:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.