Multi-Level Embedding and Alignment Network with Consistency and Invariance Learning for Cross-View Geo-Localization
- URL: http://arxiv.org/abs/2412.14819v2
- Date: Fri, 03 Jan 2025 05:05:44 GMT
- Title: Multi-Level Embedding and Alignment Network with Consistency and Invariance Learning for Cross-View Geo-Localization
- Authors: Zhongwei Chen, Zhao-Xu Yang, Hai-Jun Rong,
- Abstract summary: Cross-View Geo-Localization (CVGL) involves determining the localization of drone images by retrieving the most similar GPS-tagged satellite images.
Existing methods often overlook the problem of increased computational and storage requirements when improving model performance.
We propose a lightweight enhanced alignment network, called the Multi-Level Embedding and Alignment Network (MEAN)
- Score: 2.733505168507872
- License:
- Abstract: Cross-View Geo-Localization (CVGL) involves determining the localization of drone images by retrieving the most similar GPS-tagged satellite images. However, the imaging gaps between platforms are often significant and the variations in viewpoints are substantial, which limits the ability of existing methods to effectively associate cross-view features and extract consistent and invariant characteristics. Moreover, existing methods often overlook the problem of increased computational and storage requirements when improving model performance. To handle these limitations, we propose a lightweight enhanced alignment network, called the Multi-Level Embedding and Alignment Network (MEAN). The MEAN network uses a progressive multi-level enhancement strategy, global-to-local associations, and cross-domain alignment, enabling feature communication across levels. This allows MEAN to effectively connect features at different levels and learn robust cross-view consistent mappings and modality-invariant features. Moreover, MEAN adopts a shallow backbone network combined with a lightweight branch design, effectively reducing parameter count and computational complexity. Experimental results on the University-1652 and SUES-200 datasets demonstrate that MEAN reduces parameter count by 62.17% and computational complexity by 70.99% compared to state-of-the-art models, while maintaining competitive or even superior performance. Our code and models will be released on https://github.com/ISChenawei/MEAN.
Related papers
- SaliencyI2PLoc: saliency-guided image-point cloud localization using contrastive learning [17.29563451509921]
SaliencyI2PLoc is a contrastive learning architecture that fuses the saliency map into feature aggregation.
Our method achieves a Recall@1 of 78.92% and a Recall@20 of 97.59% on the urban scenario evaluation dataset.
arXiv Detail & Related papers (2024-12-20T05:20:10Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - ClusVPR: Efficient Visual Place Recognition with Clustering-based
Weighted Transformer [13.0858576267115]
We present ClusVPR, a novel approach that tackles the specific issues of redundant information in duplicate regions and representations of small objects.
ClusVPR introduces a unique paradigm called Clustering-based weighted Transformer Network (CWTNet)
We also introduce the optimized-VLAD layer that significantly reduces the number of parameters and enhances model efficiency.
arXiv Detail & Related papers (2023-10-06T09:01:15Z) - Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based
Transformer Network for Remote Sensing Image Super-Resolution [13.894645293832044]
Transformer-based models have shown competitive performance in remote sensing image super-resolution (RSISR)
We propose a novel transformer architecture called Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based Transformer Network (SPIFFNet) for RSISR.
Our proposed model effectively enhances global cognition and understanding of the entire image, facilitating efficient integration of features cross-stages.
arXiv Detail & Related papers (2023-07-06T13:19:06Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-06-20T12:03:54Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
We build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR.
We consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information.
Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods.
arXiv Detail & Related papers (2020-07-19T01:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.