DS$^2$-ABSA: Dual-Stream Data Synthesis with Label Refinement for Few-Shot Aspect-Based Sentiment Analysis
- URL: http://arxiv.org/abs/2412.14849v1
- Date: Thu, 19 Dec 2024 13:39:47 GMT
- Title: DS$^2$-ABSA: Dual-Stream Data Synthesis with Label Refinement for Few-Shot Aspect-Based Sentiment Analysis
- Authors: Hongling Xu, Yice Zhang, Qianlong Wang, Ruifeng Xu,
- Abstract summary: DS$2$-ABSA is a dual-stream data synthesis framework for few-shot sentiment analysis.
It generates diverse and high-quality ABSA samples in low-resource settings.
- Score: 28.40606116720525
- License:
- Abstract: Recently developed large language models (LLMs) have presented promising new avenues to address data scarcity in low-resource scenarios. In few-shot aspect-based sentiment analysis (ABSA), previous efforts have explored data augmentation techniques, which prompt LLMs to generate new samples by modifying existing ones. However, these methods fail to produce adequately diverse data, impairing their effectiveness. Besides, some studies apply in-context learning for ABSA by using specific instructions and a few selected examples as prompts. Though promising, LLMs often yield labels that deviate from task requirements. To overcome these limitations, we propose DS$^2$-ABSA, a dual-stream data synthesis framework targeted for few-shot ABSA. It leverages LLMs to synthesize data from two complementary perspectives: \textit{key-point-driven} and \textit{instance-driven}, which effectively generate diverse and high-quality ABSA samples in low-resource settings. Furthermore, a \textit{label refinement} module is integrated to improve the synthetic labels. Extensive experiments demonstrate that DS$^2$-ABSA significantly outperforms previous few-shot ABSA solutions and other LLM-oriented data generation methods.
Related papers
- SampleLLM: Optimizing Tabular Data Synthesis in Recommendations [46.689486044254544]
Tabular data synthesis is crucial in machine learning, yet existing general methods are highly data-dependent and often fall short in recommender systems.
This limitation arises from their difficulty in capturing complex distributions and understanding feature relationships from sparse and limited data.
We propose a novel two-stage framework named SampleLLM to improve the quality of LLM-based data synthesis for recommendation tasks.
arXiv Detail & Related papers (2025-01-27T15:12:27Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Instruction Tuning with Retrieval-based Examples Ranking for Aspect-based Sentiment Analysis [7.458853474864602]
Aspect-based sentiment analysis (ABSA) identifies sentiment information related to specific aspects and provides deeper market insights to businesses and organizations.
Recent studies have proposed using fixed examples for instruction tuning to reformulate ABSA as a generation task.
This study proposes an instruction learning method with retrieval-based example ranking for ABSA tasks.
arXiv Detail & Related papers (2024-05-28T10:39:10Z) - SQBC: Active Learning using LLM-Generated Synthetic Data for Stance Detection in Online Political Discussions [1.1624569521079426]
We present two ways to leverage LLM-generated synthetic data to train and improve stance detection agents for online political discussions.
First, we show that augmenting a small fine-tuning dataset with synthetic data can improve the performance of the stance detection model.
Second, we propose a new active learning method called SQBC based on the "Query-by-Comittee" approach.
arXiv Detail & Related papers (2024-04-11T18:34:11Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of
Semi-Supervised Learning and Active Learning [60.26659373318915]
Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem.
We propose an innovative Inconsistency-based virtual aDvErial algorithm to further investigate SSL-AL's potential superiority.
Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
arXiv Detail & Related papers (2022-06-07T13:28:43Z) - Learning Mixtures of Linear Dynamical Systems [94.49754087817931]
We develop a two-stage meta-algorithm to efficiently recover each ground-truth LDS model up to error $tildeO(sqrtd/T)$.
We validate our theoretical studies with numerical experiments, confirming the efficacy of the proposed algorithm.
arXiv Detail & Related papers (2022-01-26T22:26:01Z) - Transformer-based Multi-Aspect Modeling for Multi-Aspect Multi-Sentiment
Analysis [56.893393134328996]
We propose a novel Transformer-based Multi-aspect Modeling scheme (TMM), which can capture potential relations between multiple aspects and simultaneously detect the sentiment of all aspects in a sentence.
Our method achieves noticeable improvements compared with strong baselines such as BERT and RoBERTa.
arXiv Detail & Related papers (2020-11-01T11:06:31Z) - Adversarial Feature Hallucination Networks for Few-Shot Learning [84.31660118264514]
Adversarial Feature Hallucination Networks (AFHN) is based on conditional Wasserstein Generative Adversarial networks (cWGAN)
Two novel regularizers are incorporated into AFHN to encourage discriminability and diversity of the synthesized features.
arXiv Detail & Related papers (2020-03-30T02:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.