MAPLE: Many-Shot Adaptive Pseudo-Labeling for In-Context Learning
- URL: http://arxiv.org/abs/2505.16225v2
- Date: Mon, 26 May 2025 01:51:47 GMT
- Title: MAPLE: Many-Shot Adaptive Pseudo-Labeling for In-Context Learning
- Authors: Zihan Chen, Song Wang, Zhen Tan, Jundong Li, Cong Shen,
- Abstract summary: In-Context Learning (ICL) empowers Large Language Models (LLMs) to tackle diverse tasks by incorporating multiple input-output examples.<n>Many-Shot Adaptive Pseudo-LabEling (MAPLE) is a novel influence-based many-shot ICL framework that utilizes pseudo-labeled samples to compensate for the lack of label information.
- Score: 53.02571749383208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-Context Learning (ICL) empowers Large Language Models (LLMs) to tackle diverse tasks by incorporating multiple input-output examples, known as demonstrations, into the input of LLMs. More recently, advancements in the expanded context windows of LLMs have led to many-shot ICL, which uses hundreds of demonstrations and outperforms few-shot ICL, which relies on fewer examples. However, this approach is often hindered by the high cost of obtaining large amounts of labeled data. To address this challenge, we propose Many-Shot Adaptive Pseudo-LabEling, namely MAPLE, a novel influence-based many-shot ICL framework that utilizes pseudo-labeled samples to compensate for the lack of label information. We first identify a subset of impactful unlabeled samples and perform pseudo-labeling on them by querying LLMs. These pseudo-labeled samples are then adaptively selected and tailored to each test query as input to improve the performance of many-shot ICL, without significant labeling costs. Extensive experiments on real-world datasets demonstrate the effectiveness of our framework, showcasing its ability to enhance LLM adaptability and performance with limited labeled data.
Related papers
- Large Language Models are Demonstration Pre-Selectors for Themselves [57.101804269100185]
In-context learning (ICL) with large language models (LLMs) delivers strong few-shot performance by choosing few-shot demonstrations from the entire training data.<n>FEw yet Essential Demonstration prE-selectoR is a novel pre-selection framework that identifies a representative subset of demonstrations.<n>FEw yet Essential Demonstration prE-selectoR can reduce training data size by over 20% while maintaining performance.
arXiv Detail & Related papers (2025-06-06T12:29:03Z) - Label-Guided In-Context Learning for Named Entity Recognition [14.63059248497416]
In-context learning (ICL) enables large language models to perform new tasks using only a few demonstrations.<n>We introduce DEER, a new method that leverages training labels through token-level statistics to improve ICL performance.
arXiv Detail & Related papers (2025-05-29T17:54:32Z) - Visual RAG: Expanding MLLM visual knowledge without fine-tuning [5.341192792319891]
This paper introduces Visual RAG, that synergically combines the MLLMs capability to learn from the context, with a retrieval mechanism.<n>In this way, the resulting system is not limited to the knowledge extracted from the training data, but can be updated rapidly and easily without fine-tuning.<n>It greatly reduces the computational costs for improving the model image classification performance, and augments the model knowledge to new visual domains and tasks it was not trained for.
arXiv Detail & Related papers (2025-01-18T17:43:05Z) - Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.<n>LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.<n>Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Large Language Models Know What Makes Exemplary Contexts [42.90814615222177]
In-context learning (ICL) has proven to be a significant capability with the advancement of Large Language models (LLMs)
This paper presents a unified framework for LLMs that allows them to self-select influential in-context examples to compose their contexts.
arXiv Detail & Related papers (2024-08-14T12:32:41Z) - Logit Separability-Driven Samples and Multiple Class-Related Words Selection for Advancing In-Context Learning [0.0]
We introduce logit separability, a criterion to assess the clarity of both samples and class-related words at the logit level.
We find that incorporating multiple class-related words for each sample, rather than relying on a single class name, improves performance by offering a broader range of label information.
We propose LICL, a logit separability-based method that jointly organizes samples and integrates multiple class-related words into each sample-label pair.
arXiv Detail & Related papers (2024-06-16T12:11:46Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
Large language models (LLMs) have shown impressive capabilities in real-world applications.
The quality of these exemplars in the prompt greatly impacts performance.
Existing methods fail to adequately account for the impact of exemplar ordering on the performance.
arXiv Detail & Related papers (2024-05-25T08:23:05Z) - Does In-Context Learning Really Learn? Rethinking How Large Language Models Respond and Solve Tasks via In-Context Learning [41.606494950216764]
In-context Learning (ICL) has emerged as a powerful capability alongside the development of scaled-up large language models (LLMs)
This paper decomposes the overall performance of ICL into three dimensions, label space, format, and discrimination.
We show that ICL exhibits significant efficacy in regulating the label space and format, which helps LLMs respond to desired label words.
arXiv Detail & Related papers (2024-04-11T08:20:10Z) - ParaICL: Towards Parallel In-Context Learning [74.38022919598443]
Large language models (LLMs) have become the norm in natural language processing.<n>Few-shot in-context learning (ICL) relies on the choice of few-shot demonstration examples.<n>We propose a novel method named parallel in-context learning (ParaICL)
arXiv Detail & Related papers (2024-03-31T05:56:15Z) - An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models [55.01592097059969]
Supervised finetuning on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities.
Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool.
We propose using experimental design to circumvent the computational bottlenecks of active learning.
arXiv Detail & Related papers (2024-01-12T16:56:54Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.