論文の概要: Graph-Convolutional Networks: Named Entity Recognition and Large Language Model Embedding in Document Clustering
- arxiv url: http://arxiv.org/abs/2412.14867v1
- Date: Thu, 19 Dec 2024 14:03:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:31:58.189714
- Title: Graph-Convolutional Networks: Named Entity Recognition and Large Language Model Embedding in Document Clustering
- Title(参考訳): Graph-Convolutional Networks: ドキュメントクラスタリングに組み込んだエンティティ認識と大規模言語モデル
- Authors: Imed Keraghel, Mohamed Nadif,
- Abstract要約: 本稿では、文書クラスタリングのためのグラフベースのフレームワークに、名前付きエンティティ認識(NER)とLarge Language Models(LLM)を組み込む新しいアプローチを提案する。
グラフ畳み込みネットワーク(GCN)を用いて最適化された名前付きエンティティ類似性によって重み付けされた文書とエッジのノードでグラフを構築する。
実験結果から,本手法はクラスタリングにおける従来の共起型手法,特に名前付きエンティティに富んだ文書よりも優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 9.929301228994095
- License:
- Abstract: Recent advances in machine learning, particularly Large Language Models (LLMs) such as BERT and GPT, provide rich contextual embeddings that improve text representation. However, current document clustering approaches often ignore the deeper relationships between named entities (NEs) and the potential of LLM embeddings. This paper proposes a novel approach that integrates Named Entity Recognition (NER) and LLM embeddings within a graph-based framework for document clustering. The method builds a graph with nodes representing documents and edges weighted by named entity similarity, optimized using a graph-convolutional network (GCN). This ensures a more effective grouping of semantically related documents. Experimental results indicate that our approach outperforms conventional co-occurrence-based methods in clustering, notably for documents rich in named entities.
- Abstract(参考訳): 近年の機械学習の進歩、特にBERTやGPTのような大規模言語モデル(LLM)は、テキスト表現を改善するリッチなコンテキスト埋め込みを提供する。
しかしながら、現在の文書クラスタリングアプローチは、名前付きエンティティ(NE)とLLM埋め込みの可能性の間の深い関係を無視することが多い。
本稿では、文書クラスタリングのためのグラフベースのフレームワークに、名前付きエンティティ認識(NER)とLLM埋め込みを統合する新しいアプローチを提案する。
本手法は,文書とエッジを名前付きエンティティの類似性によって重み付けしたノードでグラフを構築し,グラフ畳み込みネットワーク(GCN)を用いて最適化する。
これにより、セマンティック関連ドキュメントのより効果的なグループ化が実現される。
実験結果から,本手法はクラスタリングにおける従来の共起型手法,特に名前付きエンティティに富んだ文書よりも優れていたことが示唆された。
関連論文リスト
- Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
知識グラフ(KG)から構造化文書関係を付加したLLMを拡張した知識対応クエリ拡張フレームワークを提案する。
文書テキストをリッチなKGノード表現として活用し、KAR(Knowledge-Aware Retrieval)のための文書ベースの関係フィルタリングを利用する。
論文 参考訳(メタデータ) (2024-10-17T17:03:23Z) - Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
我々は,ハイパグラフアテンションを利用したハイパグラフアテンション文書セマンティックエンティティ認識フレームワークHGAを構築し,エンティティ境界とエンティティカテゴリを同時に重視する。
FUNSD, CORD, XFUNDIE で得られた結果は,本手法が意味的エンティティ認識タスクの性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2024-07-09T14:35:49Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-Decomposition) は、生のテキスト属性を分析してグラフ構造を分解する新しいフレームワークである。
我々のフレームワークは、さまざまなデータセットのノード分類性能を大幅に向上させ、ウィスコンシンデータセットでは最大16%の改善を実現した。
論文 参考訳(メタデータ) (2024-05-28T20:54:47Z) - Lightweight Spatial Modeling for Combinatorial Information Extraction From Documents [31.434507306952458]
文書エンティティのK-nearest-neighbor(KNN)グラフに基づいて,注目度計算の新たなバイアスを取り入れたKNNフォーマを提案する。
また、多くの文書に存在する1対1のマッピング特性に対処するために、マッチング空間を用いる。
本手法はトレーニング可能なパラメータの数の観点から既存の手法と比較して非常に効率的である。
論文 参考訳(メタデータ) (2024-05-08T10:10:38Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - Event-Driven News Stream Clustering using Entity-Aware Contextual
Embeddings [14.225334321146779]
本稿では,非パラメトリックストリーミングk-meansアルゴリズムの変種であるオンラインニュースストリームクラスタリング手法を提案する。
我々のモデルはスパースと密集した文書表現の組み合わせを使用し、これらの複数の表現に沿って文書とクラスタの類似性を集約する。
事前学習したトランスフォーマモデルにおいて,適切な微調整目標と外部知識を用いることにより,文脈埋め込みの有効性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2021-01-26T19:58:30Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z) - Document Network Projection in Pretrained Word Embedding Space [7.455546102930911]
本稿では,リンクされた文書の集合を事前学習した単語埋め込み空間に投影する新しい手法である正規化線形埋め込み(RLE)を提案する。
我々は相補的な情報を提供するペアワイズ類似性の行列を利用する(例えば、引用グラフ内の2つの文書のネットワーク近接)。
ドキュメント表現は、レコメンデーション、分類、クラスタリングなど、多くの情報検索タスクを解決するのに役立つ。
論文 参考訳(メタデータ) (2020-01-16T10:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。