論文の概要: TDCNet: Transparent Objects Depth Completion with CNN-Transformer Dual-Branch Parallel Network
- arxiv url: http://arxiv.org/abs/2412.14961v1
- Date: Thu, 19 Dec 2024 15:42:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:31:09.687659
- Title: TDCNet: Transparent Objects Depth Completion with CNN-Transformer Dual-Branch Parallel Network
- Title(参考訳): TDCNet:CNN変換器デュアルブランチ並列ネットワークによる透明物体深度補完
- Authors: Xianghui Fan, Chao Ye, Anping Deng, Xiaotian Wu, Mengyang Pan, Hang Yang,
- Abstract要約: 透明物体深度を補完する2分岐CNN-Transformer並列ネットワークであるTDCNetを提案する。
本モデルは,複数の公開データセットにまたがって最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 8.487135422430972
- License:
- Abstract: The sensing and manipulation of transparent objects present a critical challenge in industrial and laboratory robotics. Conventional sensors face challenges in obtaining the full depth of transparent objects due to the refraction and reflection of light on their surfaces and their lack of visible texture. Previous research has attempted to obtain complete depth maps of transparent objects from RGB and damaged depth maps (collected by depth sensor) using deep learning models. However, existing methods fail to fully utilize the original depth map, resulting in limited accuracy for deep completion. To solve this problem, we propose TDCNet, a novel dual-branch CNN-Transformer parallel network for transparent object depth completion. The proposed framework consists of two different branches: one extracts features from partial depth maps, while the other processes RGB-D images. Experimental results demonstrate that our model achieves state-of-the-art performance across multiple public datasets. Our code and the pre-trained model are publicly available at https://github.com/XianghuiFan/TDCNet.
- Abstract(参考訳): 透明物体のセンシングと操作は、産業用・実験用ロボティクスにおいて重要な課題である。
従来のセンサーは、表面の光の屈折と反射と、その目に見えるテクスチャの欠如により、透明な物体の完全な深さを得るという課題に直面している。
従来の研究では、深層学習モデルを用いて、RGBから透明物体の完全な深度マップと損傷深度マップ(深度センサで算出)を得ることが試みられた。
しかし、既存の手法ではもともとの深度マップを十分に活用できないため、深度マップの精度は限られている。
この問題を解決するために、透明物体深度を補完する新しいデュアルブランチCNN-Transformer並列ネットワークであるTDCNetを提案する。
提案するフレームワークは2つの異なるブランチで構成されている。一方は部分深度マップから特徴を抽出し、他方はRGB-D画像を処理する。
実験により,本モデルが複数の公開データセットにまたがる最先端性能を実現することを示す。
私たちのコードと事前トレーニングされたモデルはhttps://github.com/XianghuiFan/TDCNet.comで公開されています。
関連論文リスト
- Transparent Object Depth Completion [11.825680661429825]
理解と操作のための透明な物体の認識は、依然として大きな課題である。
深度マップに大きく依存する既存のロボットグリップ法は、その独特の視覚特性のために透明な物体には適さない。
本稿では,一視点RGB-Dに基づく深度推定と多視点深度推定の長所を組み合わせた,透明物体深度補完のためのエンドツーエンドネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T07:38:06Z) - ASGrasp: Generalizable Transparent Object Reconstruction and Grasping from RGB-D Active Stereo Camera [9.212504138203222]
RGB-Dアクティブステレオカメラを用いた6自由度グリップ検出ネットワークASGraspを提案する。
本システムでは, 透明物体形状再構成において, 生のIRおよびRGB画像を直接利用できることで, 自己を識別する。
実験により、ASGraspは、一般化可能な透明物体把握において90%以上の成功率を達成できることが示された。
論文 参考訳(メタデータ) (2024-05-09T09:44:51Z) - RDFC-GAN: RGB-Depth Fusion CycleGAN for Indoor Depth Completion [28.634851863097953]
本稿では,RDFC-GANという2分岐のエンドツーエンド核融合ネットワークを提案する。
RGBと不完全な深度画像のペアを入力として、密集した深度マップを予測する。
第1分枝は、マンハッタン世界の仮定に固執することにより、エンコーダ・デコーダ構造を用いる。
もう一方のブランチでは、RGBイメージを詳細なテクスチャ化された深度マップに変換するのに適したRGB深度融合CycleGANが適用されている。
論文 参考訳(メタデータ) (2023-06-06T11:03:05Z) - MonoGraspNet: 6-DoF Grasping with a Single RGB Image [73.96707595661867]
6-DoFロボットの把握は長続きするが未解決の問題だ。
近年の手法では3次元ネットワークを用いて深度センサから幾何的把握表現を抽出している。
我々はMonoGraspNetと呼ばれるRGBのみの6-DoFグルーピングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-09-26T21:29:50Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
RGB-D Salient Object Detection (SOD) のための新しいマルチタスク・マルチモーダルフィルタトランス (MMFT) ネットワークを提案する。
具体的には、深度推定、健全な物体検出、輪郭推定の3つの相補的なタスクを統合する。マルチタスク機構は、タスク認識の特徴を補助タスクから学習するためのモデルを促進する。
実験の結果、複数のデータセット上での深度に基づくRGB-D SOD法をはるかに上回るだけでなく、高品質の深度マップと塩分濃度を同時に正確に予測できることがわかった。
論文 参考訳(メタデータ) (2022-03-09T17:20:18Z) - TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth
Completion and Grasping [46.6058840385155]
我々は、透明な物体深度を補完する大規模な実世界のデータセットをコントリビュートする。
データセットには、130の異なるシーンから57,715枚のRGB-D画像が含まれている。
本稿では,RGB画像と不正確な深度マップを入力とし,精細化された深度マップを出力するエンド・ツー・エンドの深度補完ネットワークを提案する。
論文 参考訳(メタデータ) (2022-02-17T06:50:20Z) - Seeing Glass: Joint Point Cloud and Depth Completion for Transparent
Objects [16.714074893209713]
TranspareNetはジョイントポイントクラウドとディープコンプリートコンプリート方式である。
透明な物体の深さを、散らかって複雑な場面で埋めることができます。
TranspareNetは、既存の最先端のディープコンプリートメソッドを複数のデータセットで上回っている。
論文 参考訳(メタデータ) (2021-09-30T21:09:09Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z) - Accurate RGB-D Salient Object Detection via Collaborative Learning [101.82654054191443]
RGB-Dサリエンシ検出は、いくつかの課題シナリオにおいて素晴らしい能力を示している。
本稿では,エッジ,深度,塩分濃度をより効率的に活用する新しい協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-23T04:33:36Z) - Is Depth Really Necessary for Salient Object Detection? [50.10888549190576]
本稿では,RGB情報のみを推論の入力とする統合深度認識フレームワークの実現に向けた最初の試みを行う。
5つの公開RGB SODベンチマークの最先端のパフォーマンスを上回るだけでなく、5つのベンチマークのRGBDベースのメソッドを大きく上回っている。
論文 参考訳(メタデータ) (2020-05-30T13:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。