Stitch Contrast and Segment_Learning a Human Action Segmentation Model Using Trimmed Skeleton Videos
- URL: http://arxiv.org/abs/2412.14988v2
- Date: Sat, 21 Dec 2024 13:19:14 GMT
- Title: Stitch Contrast and Segment_Learning a Human Action Segmentation Model Using Trimmed Skeleton Videos
- Authors: Haitao Tian, Pierre Payeur,
- Abstract summary: This paper presents a novel framework for skeleton-based action segmentation trained on short trimmed skeleton videos.
It is implemented in three steps: Stitch, Contrast, and Segment.
Experiments involve a trimmed source dataset and an untrimmed target dataset.
- Score: 3.069335774032178
- License:
- Abstract: Existing skeleton-based human action classification models rely on well-trimmed action-specific skeleton videos for both training and testing, precluding their scalability to real-world applications where untrimmed videos exhibiting concatenated actions are predominant. To overcome this limitation, recently introduced skeleton action segmentation models involve un-trimmed skeleton videos into end-to-end training. The model is optimized to provide frame-wise predictions for any length of testing videos, simultaneously realizing action localization and classification. Yet, achieving such an improvement im-poses frame-wise annotated skeleton videos, which remains time-consuming in practice. This paper features a novel framework for skeleton-based action segmentation trained on short trimmed skeleton videos, but that can run on longer un-trimmed videos. The approach is implemented in three steps: Stitch, Contrast, and Segment. First, Stitch proposes a tem-poral skeleton stitching scheme that treats trimmed skeleton videos as elementary human motions that compose a semantic space and can be sampled to generate multi-action stitched se-quences. Contrast learns contrastive representations from stitched sequences with a novel discrimination pretext task that enables a skeleton encoder to learn meaningful action-temporal contexts to improve action segmentation. Finally, Segment relates the proposed method to action segmentation by learning a segmentation layer while handling particular da-ta availability. Experiments involve a trimmed source dataset and an untrimmed target dataset in an adaptation formulation for real-world skeleton-based human action segmentation to evaluate the effectiveness of the proposed method.
Related papers
- Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended? [22.191260650245443]
Video segmentation aims at partitioning video sequences into meaningful segments based on objects or regions of interest within frames.
Current video segmentation models are often derived from image segmentation techniques, which struggle to cope with small-scale or class-imbalanced video datasets.
We propose a training strategy Masked Video Consistency, which enhances spatial and temporal feature aggregation.
arXiv Detail & Related papers (2024-08-20T08:08:32Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - SkeleTR: Towrads Skeleton-based Action Recognition in the Wild [86.03082891242698]
SkeleTR is a new framework for skeleton-based action recognition.
It first models the intra-person skeleton dynamics for each skeleton sequence with graph convolutions.
It then uses stacked Transformer encoders to capture person interactions that are important for action recognition in general scenarios.
arXiv Detail & Related papers (2023-09-20T16:22:33Z) - LAC: Latent Action Composition for Skeleton-based Action Segmentation [21.797658771678066]
Skeleton-based action segmentation requires recognizing composable actions in untrimmed videos.
Current approaches decouple this problem by first extracting local visual features from skeleton sequences and then processing them by a temporal model to classify frame-wise actions.
We propose Latent Action Composition (LAC), a novel self-supervised framework aiming at learning from synthesized composable motions for skeleton-based action segmentation.
arXiv Detail & Related papers (2023-08-28T11:20:48Z) - Diffusion Action Segmentation [63.061058214427085]
We propose a novel framework via denoising diffusion models, which shares the same inherent spirit of such iterative refinement.
In this framework, action predictions are iteratively generated from random noise with input video features as conditions.
arXiv Detail & Related papers (2023-03-31T10:53:24Z) - Part-level Action Parsing via a Pose-guided Coarse-to-Fine Framework [108.70949305791201]
Part-level Action Parsing (PAP) aims to not only predict the video-level action but also recognize the frame-level fine-grained actions or interactions of body parts for each person in the video.
In particular, our framework first predicts the video-level class of the input video, then localizes the body parts and predicts the part-level action.
Our framework achieves state-of-the-art performance and outperforms existing methods over a 31.10% ROC score.
arXiv Detail & Related papers (2022-03-09T01:30:57Z) - Towards Tokenized Human Dynamics Representation [41.75534387530019]
We study how to segment and cluster videos into recurring temporal patterns in a self-supervised way.
We evaluate the frame-wise representation learning step by Kendall's Tau and the lexicon building step by normalized mutual information and language entropy.
On the AIST++ and PKU-MMD datasets, actons bring significant performance improvements compared to several baselines.
arXiv Detail & Related papers (2021-11-22T18:59:58Z) - Skeleton-Aware Networks for Deep Motion Retargeting [83.65593033474384]
We introduce a novel deep learning framework for data-driven motion between skeletons.
Our approach learns how to retarget without requiring any explicit pairing between the motions in the training set.
arXiv Detail & Related papers (2020-05-12T12:51:40Z) - Motion-supervised Co-Part Segmentation [88.40393225577088]
We propose a self-supervised deep learning method for co-part segmentation.
Our approach develops the idea that motion information inferred from videos can be leveraged to discover meaningful object parts.
arXiv Detail & Related papers (2020-04-07T09:56:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.