Graph-neural-network predictions of solid-state NMR parameters from spherical tensor decomposition
- URL: http://arxiv.org/abs/2412.15063v1
- Date: Thu, 19 Dec 2024 17:11:07 GMT
- Title: Graph-neural-network predictions of solid-state NMR parameters from spherical tensor decomposition
- Authors: Chiheb Ben Mahmoud, Louise A. M. Rosset, Jonathan R. Yates, Volker L. Deringer,
- Abstract summary: Nuclear magnetic resonance (NMR) is a powerful spectroscopic technique that is sensitive to the local atomic structure of matter.
Machine learning (ML) has emerged as an efficient route to making such predictions.
- Score: 0.0
- License:
- Abstract: Nuclear magnetic resonance (NMR) is a powerful spectroscopic technique that is sensitive to the local atomic structure of matter. Computational predictions of NMR parameters can help to interpret experimental data and validate structural models, and machine learning (ML) has emerged as an efficient route to making such predictions. Here, we systematically study graph-neural-network approaches to representing and learning tensor quantities for solid-state NMR -- specifically, the anisotropic magnetic shielding and the electric field gradient. We assess how the numerical accuracy of different ML models translates into prediction quality for experimentally relevant NMR properties: chemical shifts, quadrupolar coupling constants, tensor orientations, and even static 1D spectra. We apply these ML models to a structurally diverse dataset of amorphous SiO$_2$ configurations, spanning a wide range of density and local order, to larger configurations beyond the reach of traditional first-principles methods, and to the dynamics of the $\alpha\unicode{x2013}\beta$ inversion in cristobalite. Our work marks a step toward streamlining ML-driven NMR predictions for both static and dynamic behavior of complex materials, and toward bridging the gap between first-principles modeling and real-world experimental data.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - TransPeakNet: Solvent-Aware 2D NMR Prediction via Multi-Task Pre-Training and Unsupervised Learning [5.7279868722119325]
We introduce an unsupervised training framework for predicting cross-peaks in 2D NMR.
Our approach pretrains an ML model on an annotated 1D dataset of 1H and 13C shifts, then finetunes it in an unsupervised manner.
Evaluation on 479 expert-annotated HSQC spectra demonstrates our model's superiority over traditional methods.
arXiv Detail & Related papers (2024-03-17T21:52:51Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
Graph neural networks (GNNs) have drawn more and more attention from material scientists.
We develop a multi-task (MT) architecture based on DimeNet++ and mixture density networks to improve the performance of such task.
arXiv Detail & Related papers (2022-09-15T13:52:15Z) - Nanometer-Scale Nuclear Magnetic Resonance Diffraction with Sub-\AA
ngstrom Precision [0.0]
We present a new approach to nanoMRI utilizing nuclear magnetic resonance diffraction (NMRd)
The realization of NMRd on the atomic scale would create a powerful new methodology for materials characterization utilizing the spectroscopic capabilities of NMR.
arXiv Detail & Related papers (2022-04-01T05:53:52Z) - Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN) [0.0]
We present an extension of the recently developed Atomistic Line Graph Neural Network (ALIGNN) to accurately predict DOS of a large set of material unit cell structures.
We evaluate two methods of representation of the target quantity - a direct discretized spectrum, and a compressed low-dimensional representation obtained using an autoencoder.
arXiv Detail & Related papers (2022-01-20T18:28:22Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Blind Source Separation for NMR Spectra with Negative Intensity [0.0]
We benchmark several blind source separation techniques for analysis of NMR spectral datasets containing negative intensity.
FastICA, SIMPLISMA, and NNMF are top-performing techniques.
The accuracy of FastICA and SIMPLISMA degrades quickly if excess (unreal) pure components are predicted.
arXiv Detail & Related papers (2020-02-07T20:57:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.