Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN)
- URL: http://arxiv.org/abs/2201.08348v1
- Date: Thu, 20 Jan 2022 18:28:22 GMT
- Title: Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN)
- Authors: Prathik R Kaundinya, Kamal Choudhary, Surya R. Kalidindi
- Abstract summary: We present an extension of the recently developed Atomistic Line Graph Neural Network (ALIGNN) to accurately predict DOS of a large set of material unit cell structures.
We evaluate two methods of representation of the target quantity - a direct discretized spectrum, and a compressed low-dimensional representation obtained using an autoencoder.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) based models have greatly enhanced the traditional
materials discovery and design pipeline. Specifically, in recent years,
surrogate ML models for material property prediction have demonstrated success
in predicting discrete scalar-valued target properties to within reasonable
accuracy of their DFT-computed values. However, accurate prediction of spectral
targets such as the electron Density of States (DOS) poses a much more
challenging problem due to the complexity of the target, and the limited amount
of available training data. In this study, we present an extension of the
recently developed Atomistic Line Graph Neural Network (ALIGNN) to accurately
predict DOS of a large set of material unit cell structures, trained to the
publicly available JARVIS-DFT dataset. Furthermore, we evaluate two methods of
representation of the target quantity - a direct discretized spectrum, and a
compressed low-dimensional representation obtained using an autoencoder.
Through this work, we demonstrate the utility of graph-based featurization and
modeling methods in the prediction of complex targets that depend on both
chemistry and directional characteristics of material structures.
Related papers
- Electronic structure prediction of medium and high entropy alloys across composition space [4.556522329713242]
We propose machine learning (ML) models to predict the electron density across the composition space of concentrated alloys.
We employ Bayesian Active Learning (AL) to minimize training data requirements.
Our models demonstrate high accuracy and generalizability in predicting both electron density and energy across composition space.
arXiv Detail & Related papers (2024-10-10T18:29:31Z) - Fine-Tuned Language Models Generate Stable Inorganic Materials as Text [57.01994216693825]
Fine-tuning large language models on text-encoded atomistic data is simple to implement yet reliable.
We show that our strongest model can generate materials predicted to be metastable at about twice the rate of CDVAE.
Because of text prompting's inherent flexibility, our models can simultaneously be used for unconditional generation of stable material.
arXiv Detail & Related papers (2024-02-06T20:35:28Z) - Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials [3.7655047338409893]
ChargE3Net is an E(3)-equivariant graph neural network for predicting electron density in atomic systems.
We show that ChargE3Net exceeds the performance of prior work on diverse sets of molecules and materials.
arXiv Detail & Related papers (2023-12-08T21:56:19Z) - Band-gap regression with architecture-optimized message-passing neural
networks [1.9590152885845324]
We train an MPNN to first classify materials through density functional theory data from the AFLOW database as being metallic or semiconducting/insulating.
We then perform a neural-architecture search to explore the model architecture and hyper parameter space of MPNNs to predict the band gaps of the materials identified as non-metals.
The top-performing models from the search are pooled into an ensemble that significantly outperforms existing models from the literature.
arXiv Detail & Related papers (2023-09-12T16:13:10Z) - Electronic Structure Prediction of Multi-million Atom Systems Through Uncertainty Quantification Enabled Transfer Learning [5.4875371069660925]
Ground state electron density -- obtainable using Kohn-Sham Density Functional Theory (KS-DFT) simulations -- contains a wealth of material information.
However, the computational expense of KS-DFT scales cubically with system size which tends to stymie training data generation.
Here, we address this fundamental challenge by employing transfer learning to leverage the multi-scale nature of the training data.
arXiv Detail & Related papers (2023-08-24T21:41:29Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
We describe a pre-training technique that utilizes large datasets of 3D molecular structures at equilibrium.
Inspired by recent advances in noise regularization, our pre-training objective is based on denoising.
arXiv Detail & Related papers (2022-05-31T22:28:34Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFT is a deep learning model for predicting the electronic charge density around atoms.
The accuracy and scalability of the model are demonstrated for molecules, solids and liquids.
arXiv Detail & Related papers (2020-11-04T16:56:08Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.