Islands, Double Holography, and the Entanglement Membrane
- URL: http://arxiv.org/abs/2412.15070v1
- Date: Thu, 19 Dec 2024 17:21:18 GMT
- Title: Islands, Double Holography, and the Entanglement Membrane
- Authors: Hanzhi Jiang, Mike Blake, Anthony P. Thompson,
- Abstract summary: The quantum extremal island rule allows us to compute the Page curves of Hawking radiation in semi-classical gravity.<n>We study the connection between these calculations and the thermalisation of chaotic quantum many-body systems.
- Score: 0.3186130813218338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum extremal island rule allows us to compute the Page curves of Hawking radiation in semi-classical gravity. In this work, we study the connection between these calculations and the thermalisation of chaotic quantum many-body systems, using a coarse-grained description of entanglement dynamics known as the entanglement membrane. Starting from a double-holographic model of eternal two-sided asymptotically AdS$_d$ ($d>2$) black hole each coupled to a flat $d$-dimensional bath, we show that the entanglement dynamics in the late-time, large-subregion limit is described by entanglement membrane, thereby establishing a quantitative equivalence between a semi-classical gravity and a chaotic quantum many-body system calculation of the Page curve.
Related papers
- Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Bound polariton states in the Dicke-Ising model [41.94295877935867]
We present a study of hybrid light-matter excitations in cavity QED materials.
We derive the exact excitations of the system in the thermodynamic limit.
arXiv Detail & Related papers (2024-06-17T18:00:01Z) - Emergent gravity from the correlation of spin-$\tfrac{1}{2}$ systems coupled with a scalar field [0.0]
This paper introduces several ideas of emergent gravity, which come from a system similar to an ensemble of quantum spin-$tfrac12$ particles.
To derive a physically relevant theory, the model is constructed by quantizing a scalar field in curved space-time.
arXiv Detail & Related papers (2024-05-03T14:34:48Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Lattice Holography on a Quantum Computer [10.205744392217532]
We compute the ground state of a spin system on a $(2+1)$-dimensional hyperbolic lattice.
We observe that with achievable resources for coming quantum devices, the correlation function demonstrates an approximate scale-invariant behavior.
arXiv Detail & Related papers (2023-12-16T21:48:24Z) - Entanglement constraint on wave-particle duality for tripartite systems [0.0]
A global multi-partite entanglement may place a constraint on the wave-particle duality.
We perform quantum state tomography to reconstruct the reduced density matrix.
We show that, theoretically and experimentally, the quantitative wave-particle duality is indeed constrained by the global tripartite entanglement.
arXiv Detail & Related papers (2023-11-16T03:28:48Z) - Realizing the entanglement Hamiltonian of a topological quantum Hall
system [10.092164351939825]
Topological quantum many-body systems, such as Hall insulators, are characterized by a hidden order encoded in the entanglement between their constituents.
Entanglement entropy, an experimentally accessible single number that globally quantifies entanglement, has been proposed as a first signature of topological order.
We use a synthetic dimension, encoded in the electronic spin of dysprosium atoms, to implement spatially deformed Hall systems.
arXiv Detail & Related papers (2023-07-12T15:40:06Z) - Lindbladian dissipation of strongly-correlated quantum matter [0.9290757451344674]
The Sachdev-Ye-Kitaev Lindbladian is a paradigmatic solvable model of dissipative many-body quantum chaos.
Analytical progress is possible by developing a mean-field theory for the Liouvillian time evolution on the Keldysh contour.
arXiv Detail & Related papers (2021-12-22T18:17:52Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Dynamical Evolution of Entanglement in Disordered Oscillator Systems [0.0]
We study the non-equilibrium dynamics of a disordered quantum system consisting of harmonic oscillators in a $d$-dimensional lattice.
If the system is sufficiently localized, we show that, starting from a broad class of initial product states that are associated with a tiling (decomposition) of the $d$-dimensional lattice, the dynamical evolution of entanglement follows an area law in all times.
arXiv Detail & Related papers (2021-04-28T15:16:50Z) - Geometric Quantum Information Structure in Quantum Fields and their
Lattice Simulation [0.0]
An upper limit to distillable entanglement has an exponential decay defined by a geometric decay constant.
When regulated at short distances with a spatial lattice, this entanglement abruptly vanishes beyond a dimensionless separation.
We highlight potential impacts of the distillable entanglement structure on effective field theories, lattice QCD calculations and future quantum simulations.
arXiv Detail & Related papers (2020-08-09T04:26:49Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.