Bound polariton states in the Dicke-Ising model
- URL: http://arxiv.org/abs/2406.11957v3
- Date: Fri, 14 Mar 2025 15:57:33 GMT
- Title: Bound polariton states in the Dicke-Ising model
- Authors: Juan Román-Roche, Álvaro Gómez-León, Fernando Luis, David Zueco,
- Abstract summary: We present a study of hybrid light-matter excitations in cavity QED materials.<n>We derive the exact excitations of the system in the thermodynamic limit.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a study of hybrid light-matter excitations in cavity QED materials using the Dicke-Ising model as a theoretical framework. Leveraging linear response theory, we derive the exact excitations of the system in the thermodynamic limit. Our results demonstrate that the cavity can localize spin excitations, leading to the formation of bound polaritons, where the cavity acts as an impurity of the two-excitation band, localizing spin-wave pairs around single-spin domains. We derive the condition for the existence of these bound states and discuss its satisfiability in different regimes. Finally, we show that these effects persist in finite systems using exact-diagonalization calculations.
Related papers
- Fermionization and collective excitations of 1D polariton lattices [0.0]
We show that the hallmarks of correlation and fermionization in a one-dimensional exciton-polaritons gas can be observed with state-of-the-art technology.
Our work encourages future experiments aimed at observing, for the first time, strongly correlated exciton-polariton physics.
arXiv Detail & Related papers (2024-05-03T17:09:12Z) - Implementation and characterization of the dice lattice in the electron quantum simulator [0.0]
We study the experimental realization of the dice lattice with adjustable parameters.
The high mobility of Shockley state electrons enables an accurate theoretical description of the artificial lattice.
Our theoretical findings suggest that, owing to the exceptional electron mobility, the highly degenerate eigenenergy associated with the Aharonov-Bohm caging mechanism may not manifest in the proposed experiment.
arXiv Detail & Related papers (2024-03-09T23:27:19Z) - Bardeen-Cooper-Schrieffer interaction as an infinite-range Penson-Kolb pairing mechanism [0.0]
We show that the well-known $(kuparrow, -kdownarrow)$ Bardeen-Cooper-Schrieffer interaction, when considered in real space, is equivalent to an infinite-range Penson-Kolb pairing mechanism.
We investigate the dynamics of fermionic particles confined in a ring-shaped lattice.
arXiv Detail & Related papers (2024-01-30T10:29:46Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Realizing a 1D topological gauge theory in an optically dressed BEC [0.0]
Topological gauge theories describe the low-energy properties of strongly correlated quantum systems through effective weakly interacting models.
In traditional solid-state platforms such gauge theories are only convenient theoretical constructions.
We report the quantum simulation of a topological gauge theory by realizing a one-dimensional reduction of the Chern-Simons theory in a Bose-Einstein condensate.
arXiv Detail & Related papers (2022-04-11T19:38:44Z) - Tutorial: Macroscopic QED and vacuum forces [0.0]
This tutorial introduces the theory of macroscopic QED, where a Hamiltonian is found that represents the electromagnetic field interacting with a dispersive, dissipative material.
We finish by applying macroscopic QED to reproduce Pendry's expression for the quantum friction force between sliding plates.
arXiv Detail & Related papers (2022-02-17T17:02:54Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Probing particle-particle correlation in harmonic traps with twisted
light [0.0]
We explore the potential of twisted light as a tool to unveil many-body effects in parabolically confined systems.
We demonstrate the ability of the proposed twisted light probe to capture the transition of interacting fermions into a strongly correlated regime.
These features, observed in exact calculations for two electrons, are reproduced in adiabatic Time Dependent Density Functional Theory simulations.
arXiv Detail & Related papers (2021-05-12T16:07:59Z) - Quantum Embedding Theory for Strongly-correlated States in Materials [2.3398944692275476]
We present a derivation of a quantum embedding theory based on the definition of effective Hamiltonians.
The effect of the environment on a chosen active space is accounted for through screened Coulomb interactions evaluated using density functional theory.
We generalize the quantum embedding theory to active spaces composed of orbitals that are not eigenstates of Kohn-Sham Hamiltonians.
arXiv Detail & Related papers (2021-02-25T21:13:56Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Propagators in the Correlated Worldline Theory of Quantum Gravity [0.0]
We show that the most natural formulation of CWL theory involves a rescaling of the generating functional for the theory.
The matter paths are correlated by gravitation, thereby violating quantum mechanics for large masses.
For the example of a two-path experiment, we derive the CWL matter propagator, and show how the results compare with conventional quantum theory and with semiclassical gravity.
arXiv Detail & Related papers (2020-11-29T00:31:10Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - On the Enumerative Structures in Quantum Field Theory [0.0]
Chord diagrams appear in quantum field theory in the context of Dyson-Schwinger equations.
In another direction, we study the action of point field diffeomorphisms on a free theory.
arXiv Detail & Related papers (2020-08-26T16:38:20Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.