Outcome-Refining Process Supervision for Code Generation
- URL: http://arxiv.org/abs/2412.15118v1
- Date: Thu, 19 Dec 2024 17:59:42 GMT
- Title: Outcome-Refining Process Supervision for Code Generation
- Authors: Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran Zeng, Jindong Wang, Wei Ye, Shikun Zhang,
- Abstract summary: Large Language Models struggle with complex programming tasks that require deep algorithmic reasoning.
We propose Outcome-Refining Process Supervision, a novel paradigm that treats outcome refinement itself as the process to be supervised.
Our approach achieves significant improvements across 5 models and 3 datasets: an average of 26.9% increase in correctness and 42.2% in efficiency.
- Score: 28.6680126802249
- License:
- Abstract: Large Language Models have demonstrated remarkable capabilities in code generation, yet they often struggle with complex programming tasks that require deep algorithmic reasoning. While process supervision through learned reward models shows promise in guiding reasoning steps, it requires expensive training data and suffers from unreliable evaluation. We propose Outcome-Refining Process Supervision, a novel paradigm that treats outcome refinement itself as the process to be supervised. Our framework leverages concrete execution signals to ground the supervision of reasoning steps, while using tree-structured exploration to maintain multiple solution trajectories simultaneously. Experiments demonstrate that our approach enables even smaller models to achieve high success accuracy and performance metrics on competitive programming tasks, creates more reliable verification than traditional reward models without requiring training PRMs. Our approach achieves significant improvements across 5 models and 3 datasets: an average of 26.9% increase in correctness and 42.2% in efficiency. The results suggest that providing structured reasoning space with concrete verification signals is crucial for solving complex programming tasks. We open-source all our code and data at: https://github.com/zhuohaoyu/ORPS
Related papers
- Process-Supervised Reinforcement Learning for Code Generation [21.85925512674604]
Existing reinforcement learning strategies based on outcome supervision have proven effective in enhancing the performance of large language models for code generation.
In this paper, we propose a process-supervised reinforcement learning strategy to tackle complex code generation tasks.
We show that process-supervised reinforcement learning significantly surpasses methods relying solely on outcome supervision.
arXiv Detail & Related papers (2025-02-03T16:22:06Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - ToolComp: A Multi-Tool Reasoning & Process Supervision Benchmark [0.0]
We introduce ToolComp, a benchmark designed to evaluate multi-step tool-use reasoning.
ToolComp is developed through a collaboration between models and human annotators.
We generate synthetic training data to compare the performance of outcome-supervised reward models with process-supervised reward models.
arXiv Detail & Related papers (2025-01-02T15:10:52Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.
We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.
Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
In reasoning tasks, even a minor error can cascade into inaccurate results.
We develop a method that avoids introducing external resources, relying instead on perturbations to the input.
Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks.
arXiv Detail & Related papers (2024-03-04T16:21:54Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
We propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories.
Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework.
arXiv Detail & Related papers (2024-02-01T15:18:33Z) - Leveraging Reinforcement Learning and Large Language Models for Code
Optimization [14.602997316032706]
This paper introduces a new framework to decrease the complexity of code optimization.
The proposed framework builds on large language models (LLMs) and reinforcement learning (RL)
We run several experiments on the PIE dataset using a CodeT5 language model and RRHF, a new reinforcement learning algorithm.
arXiv Detail & Related papers (2023-12-09T19:50:23Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.