論文の概要: EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
- arxiv url: http://arxiv.org/abs/2412.15190v1
- Date: Thu, 19 Dec 2024 18:57:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:31:04.771360
- Title: EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
- Title(参考訳): EarthDial:多感な地球観測を対話型対話に変える
- Authors: Sagar Soni, Akshay Dudhane, Hiyam Debary, Mustansar Fiaz, Muhammad Akhtar Munir, Muhammad Sohail Danish, Paolo Fraccaro, Campbell D Watson, Levente J Klein, Fahad Shahbaz Khan, Salman Khan,
- Abstract要約: EarthDialは、地球観測(EO)データ用に特別に設計された会話アシスタントである。
複雑な多感覚地球観測を対話的な自然言語対話に変換する。
EarthDialはマルチスペクトル、マルチテンポラル、マルチレゾリューション画像をサポートする。
- 参考スコア(独自算出の注目度): 46.601134018876955
- License:
- Abstract: Automated analysis of vast Earth observation data via interactive Vision-Language Models (VLMs) can unlock new opportunities for environmental monitoring, disaster response, and resource management. Existing generic VLMs do not perform well on Remote Sensing data, while the recent Geo-spatial VLMs remain restricted to a fixed resolution and few sensor modalities. In this paper, we introduce EarthDial, a conversational assistant specifically designed for Earth Observation (EO) data, transforming complex, multi-sensory Earth observations into interactive, natural language dialogues. EarthDial supports multi-spectral, multi-temporal, and multi-resolution imagery, enabling a wide range of remote sensing tasks, including classification, detection, captioning, question answering, visual reasoning, and visual grounding. To achieve this, we introduce an extensive instruction tuning dataset comprising over 11.11M instruction pairs covering RGB, Synthetic Aperture Radar (SAR), and multispectral modalities such as Near-Infrared (NIR) and infrared. Furthermore, EarthDial handles bi-temporal and multi-temporal sequence analysis for applications like change detection. Our extensive experimental results on 37 downstream applications demonstrate that EarthDial outperforms existing generic and domain-specific models, achieving better generalization across various EO tasks.
- Abstract(参考訳): 対話型ビジョンランゲージモデル(VLM)による地球観測データの自動解析は、環境モニタリング、災害対応、資源管理の新たな機会を開放することができる。
既存の一般的なVLMはリモートセンシングのデータではうまく動作しないが、最近のGeo-Spatial VLMは固定解像度に制限され、センサーの変調は少ない。
本稿では,地球観測(EO)データに特化して設計された対話型アシスタントであるEarthDialを紹介する。
EarthDialはマルチスペクトル、マルチテンポラル、マルチ解像度の画像をサポートし、分類、検出、キャプション、質問応答、視覚的推論、視覚的接地など幅広いリモートセンシングタスクを可能にする。
そこで本研究では,RGB,SAR(Synthetic Aperture Radar),近赤外(NIR)や赤外などのマルチスペクトルモードをカバーする1111万以上の命令ペアからなる広範囲な命令チューニングデータセットを提案する。
さらに、EarthDialは、変更検出などのアプリケーションに対して、バイテンポラリおよびマルチテンポラリシーケンス解析を処理する。
37のダウンストリームアプリケーションに対する大規模な実験結果から、EarthDialは既存のジェネリックモデルやドメイン固有モデルよりも優れており、様々なEOタスクにおけるより優れた一般化を実現していることが示された。
関連論文リスト
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
本稿では,地球モニタリングタスクにおける深層学習アプリケーションを強化することを目的とした,リモートセンシングデータの自己監督を目的としたデータセットを提案する。
このデータセットは15テラピクセルのグローバルリモートセンシングデータにまたがっており、NEON、Sentinel、Satellogicによる1mの空間解像度データの新たなリリースなど、さまざまなソースの画像を組み合わせている。
このデータセットは、リモートセンシングデータの異なる課題に取り組むために開発されたMasked Autoencoderである。
論文 参考訳(メタデータ) (2025-01-14T13:42:22Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Deep Multimodal Fusion for Semantic Segmentation of Remote Sensing Earth Observation Data [0.08192907805418582]
本稿では,セマンティックセグメンテーションのための後期融合深層学習モデル(LF-DLM)を提案する。
1つのブランチは、UNetFormerがキャプチャした空中画像の詳細なテクスチャと、ViT(Multi-Axis Vision Transformer)バックボーンを統合する。
もう一方のブランチは、U-ViNet(U-TAE)を用いてSentinel-2衛星画像Max時系列から複雑な時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-10-01T07:50:37Z) - Locate Anything on Earth: Advancing Open-Vocabulary Object Detection for Remote Sensing Community [58.417475846791234]
LAEタスクのための最初のオープンボキャブラリ基礎オブジェクト検出器であるLAE-DINOモデルを提案し,訓練する。
我々は、確立されたリモートセンシングベンチマークDIOR、DOTAv2.0、および新たに発表された80クラスのLEE-80Cベンチマークについて実験を行った。
その結果, LAE-1Mデータセットの利点と, LAE-DINO法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-17T06:24:43Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
我々の新しいアプローチは、脳科学における神経可塑性の概念を活用する、ダイナミックワンフォーオール(DOFA)モデルを導入している。
このダイナミックなハイパーネットワークは、異なる波長に調整され、5つのセンサーのデータに基づいて1つの多目的トランスフォーマーを共同で訓練し、12の異なる地球観測タスクを遂行することを可能にする。
論文 参考訳(メタデータ) (2024-03-22T17:11:47Z) - SkySense: A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery [35.550999964460466]
本稿では,2150万の時間的シーケンスを持つマルチモーダルリモートセンシングデータセットを事前トレーニングした総称10億スケールモデルSkySenseを提案する。
我々の知る限り、SkySenseは今までで最大のマルチモーダルであり、モジュールを柔軟に組み合わせたり、個別に使用して様々なタスクに適合させることができる。
論文 参考訳(メタデータ) (2023-12-15T09:57:21Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。