AV-Link: Temporally-Aligned Diffusion Features for Cross-Modal Audio-Video Generation
- URL: http://arxiv.org/abs/2412.15191v2
- Date: Mon, 10 Mar 2025 18:30:39 GMT
- Title: AV-Link: Temporally-Aligned Diffusion Features for Cross-Modal Audio-Video Generation
- Authors: Moayed Haji-Ali, Willi Menapace, Aliaksandr Siarohin, Ivan Skorokhodov, Alper Canberk, Kwot Sin Lee, Vicente Ordonez, Sergey Tulyakov,
- Abstract summary: We propose a unified framework for Video-to-Audio (A2V) and Audio-to-Video (A2V) generation.<n>The key to our framework is a Fusion Block that facilitates bidirectional information exchange between video and audio diffusion models.
- Score: 49.6922496382879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose AV-Link, a unified framework for Video-to-Audio (A2V) and Audio-to-Video (A2V) generation that leverages the activations of frozen video and audio diffusion models for temporally-aligned cross-modal conditioning. The key to our framework is a Fusion Block that facilitates bidirectional information exchange between video and audio diffusion models through temporally-aligned self attention operations. Unlike prior work that uses dedicated models for A2V and V2A tasks and relies on pretrained feature extractors, AV-Link achieves both tasks in a single self-contained framework, directly leveraging features obtained by the complementary modality (i.e. video features to generate audio, or audio features to generate video). Extensive automatic and subjective evaluations demonstrate that our method achieves a substantial improvement in audio-video synchronization, outperforming more expensive baselines such as the MovieGen video-to-audio model.
Related papers
- TANGO: Co-Speech Gesture Video Reenactment with Hierarchical Audio Motion Embedding and Diffusion Interpolation [4.019144083959918]
We present TANGO, a framework for generating co-speech body-gesture videos.
Given a few-minute, single-speaker reference video, TANGO produces high-fidelity videos with synchronized body gestures.
arXiv Detail & Related papers (2024-10-05T16:30:46Z) - From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation [17.95017332858846]
We introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation.
VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively.
Our experiments showcase the efficiency of VAB in producing high-quality audio from video, and its capability to acquire semantic audio-visual features.
arXiv Detail & Related papers (2024-09-27T20:26:34Z) - Draw an Audio: Leveraging Multi-Instruction for Video-to-Audio Synthesis [28.172213291270868]
Foley is a term commonly used in filmmaking, referring to the addition of daily sound effects to silent films or videos to enhance the auditory experience.
Video-to-Audio (V2A) presents inherent challenges related to audio-visual synchronization.
We construct a controllable video-to-audio model, termed Draw an Audio, which supports multiple input instructions through drawn masks and loudness signals.
arXiv Detail & Related papers (2024-09-10T01:07:20Z) - AV-DiT: Efficient Audio-Visual Diffusion Transformer for Joint Audio and Video Generation [33.315479764894086]
We introduce AV-DiT, a novel and efficient audio-visual diffusion transformer.
A shared DiT backbone pre-trained on image-only data facilitates both audio and video generation.
Experiments on the AIST++ and Landscape datasets demonstrate that AV-DiT achieves state-of-the-art performance in joint audio-visual generation.
arXiv Detail & Related papers (2024-06-11T20:05:58Z) - VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs [55.82090875098132]
VideoLLaMA 2 is a set of Video Large Language Models (Video-LLMs) designed to enhance spatial-temporal modeling and audio understanding in video and audio-oriented tasks.
VideoLLaMA 2 consistently achieves competitive results among open-source models and even gets close to some proprietary models on several benchmarks.
arXiv Detail & Related papers (2024-06-11T17:22:23Z) - Frieren: Efficient Video-to-Audio Generation Network with Rectified Flow Matching [51.70360630470263]
Video-to-audio (V2A) generation aims to synthesize content-matching audio from silent video.
We propose Frieren, a V2A model based on rectified flow matching.
Experiments indicate that Frieren achieves state-of-the-art performance in both generation quality and temporal alignment.
arXiv Detail & Related papers (2024-06-01T06:40:22Z) - Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners [69.70590867769408]
Video and audio content creation serves as the core technique for the movie industry and professional users.
Existing diffusion-based methods tackle video and audio generation separately, which hinders the technique transfer from academia to industry.
In this work, we aim at filling the gap, with a carefully designed optimization-based framework for cross-visual-audio and joint-visual-audio generation.
arXiv Detail & Related papers (2024-02-27T17:57:04Z) - Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model
Adaptation [89.96013329530484]
We consider the task of generating diverse and realistic videos guided by natural audio samples from a wide variety of semantic classes.
We utilize an existing text-conditioned video generation model and a pre-trained audio encoder model.
We validate our method extensively on three datasets demonstrating significant semantic diversity of audio-video samples.
arXiv Detail & Related papers (2023-09-28T13:26:26Z) - Diff-Foley: Synchronized Video-to-Audio Synthesis with Latent Diffusion
Models [12.898486592791604]
We present Diff-Foley, a synchronized Video-to-Audio synthesis method with a latent diffusion model (LDM)
We show Diff-Foley achieves state-of-the-art V2A performance on current large scale V2A dataset.
arXiv Detail & Related papers (2023-06-29T12:39:58Z) - MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and
Video Generation [70.74377373885645]
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously.
MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design.
Experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks.
arXiv Detail & Related papers (2022-12-19T14:11:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.