Quantum Frequency Conversion of $μs$-long Photons from the Visible to the Telecom-C-Band
- URL: http://arxiv.org/abs/2412.15193v1
- Date: Thu, 19 Dec 2024 18:57:52 GMT
- Title: Quantum Frequency Conversion of $μs$-long Photons from the Visible to the Telecom-C-Band
- Authors: Soeren Wengerowsky, Stefano Duranti, Lukas Heller, Hugues de Riedmatten,
- Abstract summary: Quantum Frequency Conversion (QFC) is a technique to interface atomic systems with the telecom band in order to facilitate propagation over longer distances in fiber.
We demonstrate the difference-frequency conversion from 606 nm to 1552 nm of microsecond-long weak coherent pulses at the single photon level.
- Score: 0.0
- License:
- Abstract: Quantum Frequency Conversion (QFC) is a widely used technique to interface atomic systems with the telecom band in order to facilitate propagation over longer distances in fiber. Here we demonstrate the difference-frequency conversion from 606 nm to 1552 nm of microsecond-long weak coherent pulses at the single photon level compatible with Pr$^{3+}$:Y$_2$SiO$_5\,$ quantum memories, with high-signal to noise ratio. We use a single step difference frequency generation process with a continuous-wave pump at 994 nm in a MgO:ppLN-waveguide and ultra-narrow spectral filtering down to a bandwidth of 12.5 MHz. With this setup, we achieve the conversion of weak coherent pulses of duration up to 13.6 $\mu s$ with a device efficiency of about 25% and a signal-to-noise ratio >460 for 10 $\mu s$-long pulses containing one photon on average. This signal-to-noise ratio is large enough to enable a high-fidelity conversion of qubits emitted from an emissive quantum memory based on Pr$^{3+}$:Y$_2$SiO$_5\,$ and to realize an interface with quantum processing nodes based on narrow-linewidth cavity-enhanced trapped ions.
Related papers
- Low-Noise Cascaded Frequency Conversion of $637.2$ nm Light to the Telecommunication C-Band in a Single-Waveguide Device [0.0]
We report the difference frequency conversion of $637.2$ nm fluorescent light from a cluster of NV centers in diamond to tunable wavelengths.
In order to avoid detrimental noise from spontaneous emissions, we use a two-step conversion device based on a single-pumped periodic poled lithium niobate waveguide.
arXiv Detail & Related papers (2025-02-20T13:37:41Z) - A Versatile Chip-Scale Platform for High-Rate Entanglement Generation using an AlGaAs Microresonator Array [0.0]
Integrated photonic microresonators have become an essential resource for generating photonic qubits.
We multiplex an array of 20 small-radius microresonators each producing a 650-GHz-spaced comb of time-energy entangled-photon pairs.
We generate frequency-bin qubits in a maximally entangled two-qubit Bell state with fidelity exceeding 87$%$ (90$%$ with background correction)
arXiv Detail & Related papers (2024-12-20T21:45:32Z) - Low noise quantum frequency conversion of photons from a trapped barium
ion to the telecom O-band [0.0]
Trapped ions are one of the leading candidates for scalable and long-distance quantum networks.
One method for creating ion-photon entanglement is to exploit optically transitions from the P_(1/2) to S_(1/2) levels.
We use a two-stage quantum frequency conversion scheme to achieve a frequency shift of 375.4 THz between the input visible photon and the output telecom photon.
arXiv Detail & Related papers (2023-05-02T05:08:10Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Time-correlated Photons from a In$_{0.5}$Ga$_{0.5}$P Photonic Crystal
Cavity on a Silicon Chip [55.41644538483948]
Time-correlated photon pairs are generated by triply-resonant Four-Wave-Mixing in a In$_0.5$Ga$_0.5$P Photonic Crystal cavitiy.
The generation rate reaches 5 MHz in cavities with Q-factor $approx 4times 104$, more than one order of magnitude larger than what is measured using ring resonators with similar Q factors fabricated on the same chip.
arXiv Detail & Related papers (2022-02-19T15:22:06Z) - Spectral control of nonclassical light using an integrated thin-film
lithium niobate modulator [5.119503410288866]
We demonstrate frequency shifting and bandwidth compression of nonclassical light using an integrated thin-film lithium niobate (TFLN) phase modulator.
We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range.
Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.
arXiv Detail & Related papers (2021-12-18T16:38:00Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Quantum efficiency, purity and stability of a tunable, narrowband
microwave single-photon source [0.2949225575200669]
We demonstrate an on-demand source of microwave single photons with 71--99% intrinsic quantum efficiency.
The source is narrowband (300unitekHz) and tuneable over a 600 MHz range around 5.2 GHz.
arXiv Detail & Related papers (2021-05-24T12:19:39Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.