Analyzing Computing Undergraduate Majors from Job Market Perspective
- URL: http://arxiv.org/abs/2412.15219v1
- Date: Tue, 03 Dec 2024 19:35:13 GMT
- Title: Analyzing Computing Undergraduate Majors from Job Market Perspective
- Authors: Yazeed Alabdulkarim, Khalid Alruwayti, Hamad Alsaleh, Sultan Alfallaj, Ahmed Bablail, Abdulaziz Almaslukh,
- Abstract summary: Academic institutes offer a variety of computing majors, such as Computer Engineering, Computer Science, Information Systems, Information Technology, Software Engineering, Cybersecurity, and Data Science.
This study analyzed the relationships between various computing majors and the job market in Saudi Arabia, using LinkedIn public profile data.
- Score: 0.3298597939573778
- License:
- Abstract: The demand for computing education increases due to the rapid development of technology and its involvement in most daily activities. Academic institutes offer a variety of computing majors, such as Computer Engineering, Computer Science, Information Systems, Information Technology, Software Engineering, Cybersecurity, and Data Science. Since a major objective of earning a bachelor's degree is to improve career opportunities, it is crucial to understand how the job market perceives these computing majors. This study analyzed the relationships between various computing majors and the job market in Saudi Arabia, using LinkedIn public profile data, discovering insights into the strong relationship between the focus of certain computing majors and the employment of relevant job positions. Moreover, job category trends were analyzed over the past ten years, observing that demands for System Admin and Technical Support positions declined while demands for Business Analysis and Artificial Intelligence and Data Science inclined. This study also compared earned professional certifications between different computing major graduates that correspond to job position findings.
Related papers
- Understanding the Skills Gap between Higher Education and Industry in the UK in Artificial Intelligence Sector [1.5484595752241124]
This paper investigates how well universities in United Kingdom offering courses in AI, prepare students for jobs in the real world.
By using custom data scraping tools to gather information from job advertisements and university curricula, this study will show exactly what skills industry is looking for.
The study showed that the university curriculum in the AI domain is well balanced in most technical skills, but have a gap in Data Science and Maths and Statistics skill categories.
arXiv Detail & Related papers (2024-08-20T12:28:58Z) - Unlocking Futures: A Natural Language Driven Career Prediction System for Computer Science and Software Engineering Students [0.5735035463793009]
This study contributes valuable insights to educational advising by providing specific career suggestions based on the unique features of CS and SWE students.
The research helps individual CS and SWE students find suitable jobs that match their skills, interests, and skill-related activities.
arXiv Detail & Related papers (2024-05-28T12:56:57Z) - A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics [46.025337523478825]
Talent analytics has emerged as a promising field in applied data science for human resource management.
Recent development of Big Data and Artificial Intelligence techniques have revolutionized human resource management.
arXiv Detail & Related papers (2023-07-03T07:53:20Z) - Artificial Intelligence Impact On The Labour Force -- Searching For The
Analytical Skills Of The Future Software Engineers [0.0]
This systematic literature review aims to investigate the impact of artificial intelligence on the labour force in software engineering.
It focuses on the skills needed for future software engineers, the impact of AI on the demand for software engineering skills, and the future of work for software engineers.
arXiv Detail & Related papers (2023-02-26T03:49:53Z) - Future Computer Systems and Networking Research in the Netherlands: A
Manifesto [137.47124933818066]
We draw attention to CompSys as a vital part of ICT.
Each of the Top Sectors of the Dutch Economy, each route in the National Research Agenda, and each of the UN Sustainable Development Goals pose challenges that cannot be addressed without CompSys advances.
arXiv Detail & Related papers (2022-05-26T11:02:29Z) - Assessing the Needs of the Quantum Industry [2.619557992298662]
Quantum information science and technology (QIST) has progressed significantly in the last decade.
With the emergence of this new quantum industry, a new workforce trained in QIST skills and knowledge is needed.
We report on the results from a survey of 57 companies in the quantum industry.
arXiv Detail & Related papers (2021-08-25T17:13:46Z) - Toward Knowledge Discovery Framework for Data Science Job Market in the
United States [1.7205106391379024]
This paper introduces a framework to analyze the job market for data science-related jobs within the US.
The proposed framework includes three sub-modules allowing continuous data collection, information extraction, and a web-based visualization dashboard.
The current version of this application is deployed on the web and allows individuals and institutes to investigate skills required for data science positions.
arXiv Detail & Related papers (2021-06-14T21:23:15Z) - Interleaving Computational and Inferential Thinking: Data Science for
Undergraduates at Berkeley [81.01051375191828]
The undergraduate data science curriculum at the University of California, Berkeley is anchored in five new courses.
These courses emphasize computational thinking, inferential thinking, and working on real-world problems.
These courses have become some of the most popular on campus and have led to a surging interest in a new undergraduate major and minor program in data science.
arXiv Detail & Related papers (2021-02-13T22:51:24Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - Data-Driven Aerospace Engineering: Reframing the Industry with Machine
Learning [49.367020832638794]
The aerospace industry is poised to capitalize on big data and machine learning.
Recent trends will be explored in context of critical challenges in design, manufacturing, verification and services.
arXiv Detail & Related papers (2020-08-24T22:40:26Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.