Toward Knowledge Discovery Framework for Data Science Job Market in the
United States
- URL: http://arxiv.org/abs/2106.11077v1
- Date: Mon, 14 Jun 2021 21:23:15 GMT
- Title: Toward Knowledge Discovery Framework for Data Science Job Market in the
United States
- Authors: Mojtaba Heidarysafa and Kamran Kowsari and Masoud Bashiri and Donald
E. Brown
- Abstract summary: This paper introduces a framework to analyze the job market for data science-related jobs within the US.
The proposed framework includes three sub-modules allowing continuous data collection, information extraction, and a web-based visualization dashboard.
The current version of this application is deployed on the web and allows individuals and institutes to investigate skills required for data science positions.
- Score: 1.7205106391379024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growth of the data science field requires better tools to understand such
a fast-paced growing domain. Moreover, individuals from different backgrounds
became interested in following a career as data scientists. Therefore,
providing a quantitative guide for individuals and organizations to understand
the skills required in the job market would be crucial. This paper introduces a
framework to analyze the job market for data science-related jobs within the US
while providing an interface to access insights in this market. The proposed
framework includes three sub-modules allowing continuous data collection,
information extraction, and a web-based dashboard visualization to investigate
the spatial and temporal distribution of data science-related jobs and skills.
The result of this work shows important skills for the main branches of data
science jobs and attempts to provide a skill-based definition of these data
science branches. The current version of this application is deployed on the
web and allows individuals and institutes to investigate skills required for
data science positions through the industry lens.
Related papers
- DSBench: How Far Are Data Science Agents to Becoming Data Science Experts? [58.330879414174476]
We introduce DSBench, a benchmark designed to evaluate data science agents with realistic tasks.
This benchmark includes 466 data analysis tasks and 74 data modeling tasks, sourced from Eloquence and Kaggle competitions.
Our evaluation of state-of-the-art LLMs, LVLMs, and agents shows that they struggle with most tasks, with the best agent solving only 34.12% of data analysis tasks and achieving a 34.74% Relative Performance Gap (RPG)
arXiv Detail & Related papers (2024-09-12T02:08:00Z) - Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking [59.87055275344965]
Job-SDF is a dataset designed to train and benchmark job-skill demand forecasting models.
Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023.
Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels.
arXiv Detail & Related papers (2024-06-17T07:22:51Z) - A Survey on Data Selection for Language Models [148.300726396877]
Data selection methods aim to determine which data points to include in a training dataset.
Deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive.
Few organizations have the resources for extensive data selection research.
arXiv Detail & Related papers (2024-02-26T18:54:35Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data.
We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset.
arXiv Detail & Related papers (2023-12-21T14:20:06Z) - Assessing Scientific Contributions in Data Sharing Spaces [64.16762375635842]
This paper introduces the SCIENCE-index, a blockchain-based metric measuring a researcher's scientific contributions.
To incentivize researchers to share their data, the SCIENCE-index is augmented to include a data-sharing parameter.
Our model is evaluated by comparing the distribution of its output for geographically diverse researchers to that of the h-index.
arXiv Detail & Related papers (2023-03-18T19:17:47Z) - A Vision for Semantically Enriched Data Science [19.604667287258724]
Key areas such as utilizing domain knowledge and data semantics are areas where we have seen little automation.
We envision how leveraging "semantic" understanding and reasoning on data in combination with novel tools for data science automation can help with consistent and explainable data augmentation and transformation.
arXiv Detail & Related papers (2023-03-02T16:03:12Z) - Computational Skills by Stealth in Secondary School Data Science [16.960800464621993]
We discuss a proposal for the stealth development of computational skills in students' first exposure to data science.
The intent of this approach is to support students, regardless of interest and self-efficacy in coding, in becoming data-driven learners.
arXiv Detail & Related papers (2020-10-08T09:11:51Z) - Data-Driven Aerospace Engineering: Reframing the Industry with Machine
Learning [49.367020832638794]
The aerospace industry is poised to capitalize on big data and machine learning.
Recent trends will be explored in context of critical challenges in design, manufacturing, verification and services.
arXiv Detail & Related papers (2020-08-24T22:40:26Z) - A fresh look at introductory data science [0.0]
We present a case study of an introductory undergraduate course in data science that is designed to address these needs.
This course has no pre-requisites and serves a wide audience of aspiring statistics and data science majors as well as humanities, social sciences, and natural sciences students.
We discuss the unique set of challenges posed by offering such a course and in light of these challenges, we present a detailed discussion into the pedagogical design elements, content, structure, computational infrastructure, and the assessment methodology of the course.
arXiv Detail & Related papers (2020-08-01T18:39:34Z) - From Data to Knowledge to Action: A Global Enabler for the 21st Century [26.32590947516587]
A confluence of advances in the computer and mathematical sciences has unleashed unprecedented capabilities for enabling true evidence-based decision making.
These capabilities are making possible the large-scale capture of data and the transformation of that data into insights and recommendations.
The shift of commerce, science, education, art, and entertainment to the web makes available unprecedented quantities of structured and unstructured databases about human activities.
arXiv Detail & Related papers (2020-07-31T19:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.