Channel Merging: Preserving Specialization for Merged Experts
- URL: http://arxiv.org/abs/2412.15283v1
- Date: Wed, 18 Dec 2024 16:07:44 GMT
- Title: Channel Merging: Preserving Specialization for Merged Experts
- Authors: Mingyang Zhang, Jing Liu, Ganggui Ding, Xinyi Yu, Linlin Ou, Bohan Zhuang,
- Abstract summary: We introduce Channel Merging, a novel strategy designed to minimize parameter conflicts while enhancing storage efficiency.
Our experiments demonstrate that Channel Merging consistently delivers high performance, matching unmerged models in tasks like English and Chinese reasoning, mathematical reasoning, and code generation.
- Score: 16.122289324737366
- License:
- Abstract: Lately, the practice of utilizing task-specific fine-tuning has been implemented to improve the performance of large language models (LLM) in subsequent tasks. Through the integration of diverse LLMs, the overall competency of LLMs is significantly boosted. Nevertheless, traditional ensemble methods are notably memory-intensive, necessitating the simultaneous loading of all specialized models into GPU memory. To address the inefficiency, model merging strategies have emerged, merging all LLMs into one model to reduce the memory footprint during inference. Despite these advances, model merging often leads to parameter conflicts and performance decline as the number of experts increases. Previous methods to mitigate these conflicts include post-pruning and partial merging. However, both approaches have limitations, particularly in terms of performance and storage efficiency when merged experts increase. To address these challenges, we introduce Channel Merging, a novel strategy designed to minimize parameter conflicts while enhancing storage efficiency. This method clusters and merges channel parameters based on their similarity to form several groups offline. By ensuring that only highly similar parameters are merged within each group, it significantly reduces parameter conflicts. During inference, we can instantly look up the expert parameters from the merged groups, preserving specialized knowledge. Our experiments demonstrate that Channel Merging consistently delivers high performance, matching unmerged models in tasks like English and Chinese reasoning, mathematical reasoning, and code generation. Moreover, it obtains results comparable to model ensemble with just 53% parameters when used with a task-specific router.
Related papers
- 1bit-Merging: Dynamic Quantized Merging for Large Language Models [20.19975755949984]
texttt1bit-Merging is a novel framework that integrates task-specific routing with 1-bit quantized task vectors to balance performance and storage efficiency.
We demonstrate that texttt1bit-Merging achieves comparable or superior performance to existing methods while significantly reducing storage requirements.
arXiv Detail & Related papers (2025-02-15T09:47:50Z) - Mediator: Memory-efficient LLM Merging with Less Parameter Conflicts and Uncertainty Based Routing [19.681042016834187]
Model merging aggregates Large Language Models finetuned on different tasks into a stronger one.
In this work, we observe that different layers exhibit varying levels of parameter conflicts.
We build on this insight and use a novel task-level expert routing for layers with significant conflicts.
arXiv Detail & Related papers (2025-02-06T11:26:30Z) - Optimize Incompatible Parameters through Compatibility-aware Knowledge Integration [104.52015641099828]
Existing research excels in removing such parameters or merging the outputs of multiple different pretrained models.
We propose Compatibility-aware Knowledge Integration (CKI), which consists of Deep Assessment and Deep Splicing.
The integrated model can be used directly for inference or for further fine-tuning.
arXiv Detail & Related papers (2025-01-10T01:42:43Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - Parameter Competition Balancing for Model Merging [13.66727853299506]
PCB-Merging is a training-free technique that adjusts the coefficients of each parameter for effective model merging.
PCB-Merging achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models.
arXiv Detail & Related papers (2024-10-03T11:17:58Z) - Activated Parameter Locating via Causal Intervention for Model Merging [26.98015572633289]
Model merging combines multiple models into one model, achieving convincing generalization without the necessity of additional training.
Existing models have demonstrated that dropping a portion of delta parameters can alleviate conflicts while maintaining performance.
We propose an Activated Locating (APL) method that utilizes causal intervention to estimate importance, enabling more precise parameter drops and better conflict mitigation.
arXiv Detail & Related papers (2024-08-18T14:00:00Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Merging Multi-Task Models via Weight-Ensembling Mixture of Experts [64.94129594112557]
Merging Transformer-based models trained on different tasks into a single unified model can execute all the tasks concurrently.
Previous methods, exemplified by task arithmetic, have been proven to be both effective and scalable.
We propose to merge most of the parameters while upscaling the Transformer layers to a weight-ensembling mixture of experts (MoE) module.
arXiv Detail & Related papers (2024-02-01T08:58:57Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - TIES-Merging: Resolving Interference When Merging Models [95.59265307318752]
Transfer learning can confer significant advantages, including improved downstream performance, faster convergence, and better sample efficiency.
Model merging has emerged as a solution to combine multiple task-specific models into a single model without performing additional training.
Existing merging methods often ignore the interference between parameters of different models, resulting in large performance drops when merging multiple models.
We propose TIES-Merging, which introduces three novel steps when merging models: resetting parameters that only changed a small amount during fine-tuning, resolving sign conflicts, and merging only the parameters that are in alignment with the final agreed-upon sign.
arXiv Detail & Related papers (2023-06-02T17:31:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.