Mediator: Memory-efficient LLM Merging with Less Parameter Conflicts and Uncertainty Based Routing
- URL: http://arxiv.org/abs/2502.04411v2
- Date: Tue, 11 Feb 2025 12:09:51 GMT
- Title: Mediator: Memory-efficient LLM Merging with Less Parameter Conflicts and Uncertainty Based Routing
- Authors: Kunfeng Lai, Zhenheng Tang, Xinglin Pan, Peijie Dong, Xiang Liu, Haolan Chen, Li Shen, Bo Li, Xiaowen Chu,
- Abstract summary: Model merging aggregates Large Language Models finetuned on different tasks into a stronger one.
In this work, we observe that different layers exhibit varying levels of parameter conflicts.
We build on this insight and use a novel task-level expert routing for layers with significant conflicts.
- Score: 19.681042016834187
- License:
- Abstract: Model merging aggregates Large Language Models (LLMs) finetuned on different tasks into a stronger one. However, parameter conflicts between models leads to performance degradation in averaging. While model routing addresses this issue by selecting individual models during inference, it imposes excessive storage and compute costs, and fails to leverage the common knowledge from different models. In this work, we observe that different layers exhibit varying levels of parameter conflicts. Building on this insight, we average layers with minimal parameter conflicts and use a novel task-level expert routing for layers with significant conflicts. To further reduce storage costs, inspired by task arithmetic sparsity, we decouple multiple fine-tuned experts into a dense expert and several sparse experts. Considering the out-of-distribution samples, we select and merge appropriate experts based on the task uncertainty of the input data. We conduct extensive experiments on both LLaMA and Qwen with varying parameter scales, and evaluate on real-world reasoning tasks. Results demonstrate that our method consistently achieves significant performance improvements while requiring less system cost compared to existing methods.
Related papers
- Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - Channel Merging: Preserving Specialization for Merged Experts [16.122289324737366]
We introduce Channel Merging, a novel strategy designed to minimize parameter conflicts while enhancing storage efficiency.
Our experiments demonstrate that Channel Merging consistently delivers high performance, matching unmerged models in tasks like English and Chinese reasoning, mathematical reasoning, and code generation.
arXiv Detail & Related papers (2024-12-18T16:07:44Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Activated Parameter Locating via Causal Intervention for Model Merging [26.98015572633289]
Model merging combines multiple models into one model, achieving convincing generalization without the necessity of additional training.
Existing models have demonstrated that dropping a portion of delta parameters can alleviate conflicts while maintaining performance.
We propose an Activated Locating (APL) method that utilizes causal intervention to estimate importance, enabling more precise parameter drops and better conflict mitigation.
arXiv Detail & Related papers (2024-08-18T14:00:00Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Merging Multi-Task Models via Weight-Ensembling Mixture of Experts [64.94129594112557]
Merging Transformer-based models trained on different tasks into a single unified model can execute all the tasks concurrently.
Previous methods, exemplified by task arithmetic, have been proven to be both effective and scalable.
We propose to merge most of the parameters while upscaling the Transformer layers to a weight-ensembling mixture of experts (MoE) module.
arXiv Detail & Related papers (2024-02-01T08:58:57Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - TIES-Merging: Resolving Interference When Merging Models [95.59265307318752]
Transfer learning can confer significant advantages, including improved downstream performance, faster convergence, and better sample efficiency.
Model merging has emerged as a solution to combine multiple task-specific models into a single model without performing additional training.
Existing merging methods often ignore the interference between parameters of different models, resulting in large performance drops when merging multiple models.
We propose TIES-Merging, which introduces three novel steps when merging models: resetting parameters that only changed a small amount during fine-tuning, resolving sign conflicts, and merging only the parameters that are in alignment with the final agreed-upon sign.
arXiv Detail & Related papers (2023-06-02T17:31:32Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
Hard parameter sharing in multi-task learning (MTL) allows tasks to share some of model parameters, reducing storage cost and improving prediction accuracy.
The common sharing practice is to share bottom layers of a deep neural network among tasks while using separate top layers for each task.
Using separate bottom-layer parameters could achieve significantly better performance than the common practice.
arXiv Detail & Related papers (2021-07-23T17:26:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.