論文の概要: Eliciting Causal Abilities in Large Language Models for Reasoning Tasks
- arxiv url: http://arxiv.org/abs/2412.15314v1
- Date: Thu, 19 Dec 2024 17:03:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:22:16.288924
- Title: Eliciting Causal Abilities in Large Language Models for Reasoning Tasks
- Title(参考訳): タスク推論のための大規模言語モデルにおける因果確率の回避
- Authors: Yajing Wang, Zongwei Luo, Jingzhe Wang, Zhanke Zhou, Yongqiang Chen, Bo Han,
- Abstract要約: 我々は,LLMが高品質で低品質な観測データを生成することができる自己因果的指導強化法(SCIE)を導入する。
SCIEでは、命令は治療として扱われ、自然言語を処理するためにテキストの特徴が使用される。
提案手法は,プロンプトのトレーニングコストを削減し,推論性能を向上させる命令を効果的に生成する。
- 参考スコア(独自算出の注目度): 14.512834333917414
- License:
- Abstract: Prompt optimization automatically refines prompting expressions, unlocking the full potential of LLMs in downstream tasks. However, current prompt optimization methods are costly to train and lack sufficient interpretability. This paper proposes enhancing LLMs' reasoning performance by eliciting their causal inference ability from prompting instructions to correct answers. Specifically, we introduce the Self-Causal Instruction Enhancement (SCIE) method, which enables LLMs to generate high-quality, low-quantity observational data, then estimates the causal effect based on these data, and ultimately generates instructions with the optimized causal effect. In SCIE, the instructions are treated as the treatment, and textual features are used to process natural language, establishing causal relationships through treatments between instructions and downstream tasks. Additionally, we propose applying Object-Relational (OR) principles, where the uncovered causal relationships are treated as the inheritable class across task objects, ensuring low-cost reusability. Extensive experiments demonstrate that our method effectively generates instructions that enhance reasoning performance with reduced training cost of prompts, leveraging interpretable textual features to provide actionable insights.
- Abstract(参考訳): プロンプト最適化は自動的に表現のプロンプトを洗練し、下流タスクにおけるLLMの潜在能力を解放する。
しかし、現在のプロンプト最適化手法は訓練に費用がかかり、十分な解釈性が欠如している。
本稿では,LLMの推論性能を向上するために,その因果推論能力を正解の指示から引き出す手法を提案する。
具体的には、LLMが高品質で低頻度な観測データを生成し、これらのデータに基づいて因果効果を推定し、最終的に最適化された因果効果で指示を生成することができる自己因果指示強化法(SCIE)を導入する。
SCIEでは、命令は処理として扱われ、テキストの特徴は自然言語処理に使用され、命令と下流タスクの処理を通して因果関係を確立する。
さらに,タスクオブジェクト間の因果関係を継承可能なクラスとして扱い,低コスト再使用性を確保するオブジェクト指向(OR)の原則を適用することを提案する。
大規模な実験により,提案手法は,解釈可能なテキスト特徴を活用して動作可能な洞察を提供することにより,推論性能を向上させる命令を効果的に生成できることが実証された。
関連論文リスト
- On the loss of context-awareness in general instruction fine-tuning [101.03941308894191]
命令応答対における教師付き微調整(SFT)のようなポストトレーニング手法は、事前トレーニング中に学習した既存の能力を損なう可能性がある。
そこで本研究では,ユーザプロンプトに配慮したポストホックアテンション・ステアリングと,コンテキスト依存度指標を用いた条件付きインストラクションの微調整という,インストラクションモデルにおけるコンテキスト認識の損失を軽減する2つの方法を提案する。
論文 参考訳(メタデータ) (2024-11-05T00:16:01Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - PILLOW: Enhancing Efficient Instruction Fine-tuning via Prompt Matching [20.607323649079845]
Low-Rank Adaptation (LoRA)は、命令の微調整に代わる有望な代替手段となっている。
PILLOWは差別ベースのLLM機能によってLoRAのパフォーマンスを改善することを目的としている。
PILLOWは、一般的な命令の微調整手法と比較して、様々な評価指標に相反する性能を示す。
論文 参考訳(メタデータ) (2023-12-09T17:38:39Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
AMPLIFY(Post Hoc Explanations)を用いたインコンテキスト学習の活用によるモデル性能向上のための新しいフレームワークを提案する。
我々は,各入力特徴がモデル予測に与える影響を抽出し,帰属スコア(説明)を出力するポストホック説明手法を活用する。
AMPLIFYは,幅広いタスクに対して約10~25%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-19T04:46:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。